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Preface

In recent years free-standing and geometric (spiral, helical, elliptical and
combinations) staircases have become quite popular. Many variations of
these staircases exist. A number of researchers have come forward with
different concepts in the fields of analytical. numerical, design and of
experimental assessments. The aim of this book i5 o cover all these
methods and to present them with greater simplicity to a practising engi-
neer. The numerous examples which are given in the text will obviously
make that task easier. The book is divided into five chapters, Chapter |
deals with the general requirements for analysing, designing and struc-
tural detailing of staircases 1n various materials, This chapter will assist
with the analysis and design of staircases given in Chapters 2 and 3.
Chapter 2 is devoted to all available classical methods including those
developed by Taleb, Gould, Liebenberg, Siev, Morgan and Cohen, Ex-
amples of staircases using these methods are included. This is followed
by Chapter 3, which is devoted to staircases analysed by the flexibility,
the stiffness and the finite element methods, A comprehensive treatment
of staircases is given, analysed by plate/shell membrane technigue. All
methods mentioned in Chapter 3 are fully described and reasonably sup-
ported by numerical examples. Analyses stated in Chapters 2 and 3 are
relevant to all materials. Chapter 4 is earmarked for a comparative study
of some of the methods described earlier. Charts and graphs are given for
the reader to examine for himself or herself the capabilities of all these
methods and their relevant applications. Mumerous design examples are
given on free-standing and geometric staircases and their ¢lements and
components. The design examples are related 1o the case studies given
in earlier chapters, which are based on existing staircases.

Bibliographical references have been given in the text for those who
wish (o carry out in-depth studies in one or all areas of research. The
book is supported by two appendices for additional analyses and exam-
ples of staircases from the practices of different countries.

Appendices will particalarly be of interest to those practising engi-
neers who wish to make a comparative study of practices and code
requirement of various countries.
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Preface

The book will serve as a useful text for teachers preparing design
syllabuses for undergraduate and post graduate courses. Each major sec-
tion has been fully explained to permit the book to be used by practising
engineers and students, particularly those facing the formidable task of
having to design/detall complicated staircases with unusual boundary
conditions for specific contracts and research assignments. Contractors
will also find this book useful in the preparation of construction draw-
ings.

M. Y.H. Bangash
T. Bangash
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Definitions

Baluster:
Clearamce:

Depth of tread:
Elliptical stair:
Going:

Helical stair:
Landing:

Half landing:
Secrolls:

Strings/siringers:
Tread (parallel):

An infilling member of a balustrade.

The unobstructed height measured at right angles
to the pitch line.

The horizontal distance to the face of the riser.

A flight described on plan as an ellipse.

A horizontal part of a step.

A stair rising to describe a helix and in all the
treads are tapered on a plan. (Commonly known
as spiral or circular stair.)

A horizontal platform of the flight at the end or
between flights.

A landing at which a half turn is made between
two flights of stairs.

The end of a handrail sculptured to resemble a
rall of parchment.

Beams which support the stair flights.

A step at which the nosing is parallel.
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constant;

width of stairway;

width of the supporting beam;

stair thickness;

effective depth;

Young's modulus;

concrete strength, cylindrical and cubic, respectively;
shear modulus;

going;

horizontal redundant foree;

gecond moment of area;

polar moment of inertia; Jacobian;

spring constants;

spans plane projection etc.;

bending moments in specific location;

twisting moment;

lateral moment (about axis normal to the stair and
vertical moment about the horizontal axis), respec-
tively;

axis force;

radius of centre line of load;

radius of centre ling of steps;

radial horizontal shear force and shear force across
the section of stairs, respectively;

torsional moment,

limiting value for maximum torsional moment;
horizontal component of membrane force load;
membrane force;

load on the flight;

SITREIT CNErgy;

tetal design ultimate load;

uniform load;

shorter and longer overall dimensions of rectangular
cross section, respectively;



XIV  Major notations

X Yo 2 = coordinates;
B = total arc subtended by helix or angle of inclination;
1 = particular value of theta at which torsional moment

is maximum or particular value of theta at which the
vertical moment is equal to zero (inflexion point);

LII ':In‘z = Pmﬂﬂrﬂ;

=] = angle subtended in plan measured from midpoint of
stair;

P slope made by tangent to helix centre line with re-

spect to the horizontal plane;

parameter;

strain;

stress, shear stress;

radius (specific).

H
([ T |
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Comparison of notations

Text European
B b

Ly, La i

L i

G B G

hy £

D, Dy f

g, Wy, & d

w, B, A A, ¥
M. T M,

For other symbols refer to individual chapters.

American

b, wy
{, a

t d
Py, Pp, Wp
i A
My
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XV

Conversion factors (units)

Imperial or MES
units

1 inch
1 foot
| ftfs

1 ft?
| in?
1
| rad

1 Ib

1 ton (short) = 2000 lb
1 ton

1 Ibf

1 kip

1 kip/it

1 kip/in

| kgf

F? (Fahrenheit) to *C;
2C (Celsius) 1o F*;

1 lb/fr
| cu fi
1 cu yd

1 Ib/in?
1 Ib/i?
1 Ibf/ft
I kip/in®

51 units

= 254 mm;
= 3048 m;
= (.3048 m/s;

= 0.0929 m?;

= 6545.2 mm?;
= (.02832 m’;
= 57.296 deg;

= [.454 Iv:g.

= 0.9072 Megagram (Mg);

= 0.964 kN;

= 4 448 M,

4448 kN;

[4.594 kN/m;

1751268 kN/m:

0.806 N;

{ty = 32)/1.8 or 1. = 5/9 Kelvin;
1.8, 4 32;

[ T |

16.018 kg/m?;
164 cm:
0.765 m™:

= 6.89 kPa (kN/m?);
47.880 Pa (N/m?);
14.59 N/m:

6.895 MPa (MN/m?}.
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CHAPTER 1

Specifications and basic data
on staircases

1.1 INTRODUCTION TO STAIRCASES

A stair is constructed with steps rising without a break from floor to
floor, or with steps rising 1o a landing between floors, with a series of
steps rising further from the landing to the floor above. There are three
basic ways in which stairs are planned:

A srraight flight stair (Fig. 1.1}, which rises from floor to floor in one
direction with or without landing.

A guarter urn stair (Fig. 1.2), which rises to a landing between tloors,
turns through 90°, then to the floor above,

A half turn stoir (Fig. 1.3), which rises to a landing between floors,
marns through 1807, then rises, parallel to the lower flight, to the floor
above. This type of stair 15 sometimes called ‘dog-leg’ or ‘scissor-type
stair’.

Crepmetric stairways. The siairs mentioned above are generally free-
standing ones. In addition to these, stairs known as geometrical stairs
can be designed into spiral, helical, circular, elliptical (Fig. 1.4) and
other shapes. They can all be in concrete, steel, timber or combination.
The stairs are sometimes described as open well stairs where a space or
well exists between flights (Fig. 1.2{(c}).

Again in free-standing stairs the main (ypes are:

- Type 1: Those supported transversely or across the flight. Stringer
beams are needed (Fig. 1.1) on one or both sides,

- Type 2: Those spanning longitudinally along the flight of steps
(Fig. 1.2) either on walls or on landing beams or on wall beams.

= Type 3: Cantilever type projecting from walls or wall beams
{Fig. 1.5) with each step acting as a cantilever.

- Type 4: Combination of Type 2 and Type 3. Every 4th or 5th step
is cantilevered with sloped soffit with a slab continuons between two
steps.

The structural details of some of the stairs are given in Appendix 2.
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2) Straight flight stair d) Stairs

25-300 "..,"II.S-E-DI}
[I——

. 1
i
|

b} A staircase with half landing

— Sectional elevation
|L

Plan

&) Closed stringer stair 1) S1air with steel siringer and special nose

Figure 1.1. Straight Might stairs.
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2) Elevation quarter fum stair

Figare 1.2 Quarier tam

Flight

Wall

Steps with
Swing bull nose

Winder

b} Plan with & quarter tum

) Opedewell 2380F, qUARET-D0m
Lype with a horizonial space

1.2 STAIRWAY LAYOUTS

Stairway layouls depend on several factors including building type and
its layout. choices, material etc. Comfortable stairways should be de-
signed in relation to the dimensions of the human figure. A summary
of the American practice for staircases 15 given in Tables 1.1 and 1.2,
The British Standard on stairs BS3395 (1977) defines some of these di-
mensions in Figure 1.6. The British and the European practices use the
following criteria for width, length and headroom ete.:

g) Flats — two storey to four sorey wp = 900 mm; more than four
storey wr = 1000 mm.

b} Public buildings using each floor — under 200 persons wp = | m;
200 to 400 persons wrp = 1.5 m; in excess of 400 persons 150 mm
o wp = 3 m. Where the width is 1.8 m or over, the width should be
divided by a handrail.

¢) The length and rise a minimum of 3 steps and a maximum of
16 steps. There must not be more than 36 rises in consecutive Mights
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Plate 1.2 Straight stairs and long landing using cable stays.
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Plate 1.3, Close siringer stxirs (quarter tum). (With compliments from the Institution of Civil Engineers, London. )
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(1) Balustrade (%) Cover
(2) Clear height (6) Post
(3) Landing depth {7) Waiat
(4) Effective height

c) Lower flight of a half-turmn stair

a) Dog-leg stair

]
—

) Staircase in timber-lower fight

d) Scissor type-landing slabs
on beams or stringers

Figl.q\: 1.3, Hall tum stairs.
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Plate 1.4. Scissor type
sbairs,

without a change in the direction of travel of 30° or more. The total rise
must not exceed 6 m.

1.2.1 Landings, landing beams and flights

A quarter space landing in wood is generally supported by a newel
post carmied down to the floor below. In small houses quarter or half
turn stairs are sometimes constructed with winders (Fig. 1.2(b)) instead
of quarter or half space landings. Winders are triangular shaped steps
constructed at the turn from one flight to the next. The landing beams
{Fig. 1.9) are designed as rectangular or flanged beams, for the reac-
tions from the two flights or steps on one side and the landing on the
other,
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Plaiz 1.5 Helical siair case
in steel.

1.2.2 Sirings or stringers

These are available in steel, concrete, timber and composite. There are
two types of wood string, namely, the open (cut) and the close (closed)
strings. The string enclosed treads and risers are shown in (Fig. 1.1). In
wood their top edges project some 50 to 60 mm above the line of nosing
or tread. Wall strings are closed ones. The outer strings, particularly
those made in timber, are cut to the profile of the treads and risers
and are secured by wood bearers screwed to both strings and treads
or risers in the underside of the flight. A cut out string is shown in
Figure 1.10.
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i. Sectional elevation i, Elevation

Figure 14, Ceomelrical
skairs

) Part circular plan with straight flights
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Elra
= -I N <115
P

% Well === b} Sectional elevation

% |

§ ! ] FI
[I:

bt iy "LHI" [%Lp q-'—_T;"_I—P fm 3-‘.|
U e

a) Plan ) Viarious boundary conditions
Figure 1.5, Free-standing
sbair-cantilever Type.

Figure 1.6 Definitions
based on British Standard
(B55395, with
compliments from BSI),
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Tahle 1.1. Dimensions for stabraays.

Step dimensions Giradient designalions Headronm Hondril height

Riser & = h; Tread T = G Per cent Angle in ¥ X

i{icm) {em) grade deg-min {cm} fcm)
1270 40.64 3125 17-11 2159 2509
13338 39.37 1187 18-43 2184 B5.00
13.497 37465 7.8 20-27 21k4 B5.00
14605 35.56 41407 22=H) 2184 ES0G
15.24 3429 d4.44 23.58 1209 HIE2
15875 30z 4807 15-40 2209 B3 82
16.51 34158 53.06 17-57 1235 B182
17.145 29,845 57.44 29.52 2735 832
17.78 7794 6363 3228 2260 B3 82
18415 2667 &9.04 3437 1286 B182
19.05 15.40 75.00 36-52 2314 B1.E2
1% 685 24.13 81.57 .02 236,2 BS
20,32 22 86 BE &8 41-38 2387 85,00
20,955 21,59 97.0% 44-9 24318 25.00
21,50 0,935 103.02 45-51 248.8 83.09
22235 06378 107.07 46-57 2634 85.36
21 86 M3z 11250 4822 751.5 86,36

Minkmuom for hesd clearance only can be safely taken as 21336 cm for all gradients; HUD permiats 203.2 cn.
Motes: 1. Consult local butldsng codes on all siafr problems. 2. All steps are laid oot by the proportion 17.78 cm =
27.94 cm. 3. Risers from 16083 cm to 1937 ¢m are most comiortabde for intenior $tairs. 4, The mininmm width for single
file travel is 76 crm bul 915 em s mone comfoable. A width desleable for fomitore passsge shall ke 107 om.
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1.2.3 Balustrade

The wood balustrade is vividly described in Figure 1.11. Since a metal
balustrade is commonly used with concrete stairs, it is difficult owing
to numerous techniques, to give the meaning full details. One typical
illustration is given in Figure 1.12.

Table 1.2, Recommended minimum chear widths of stairs for fumiture movement (cm) wy,

Fumitare Minimum hesadroom Unlimited headroom
Anbcle Sze Wide Masmow Wide and Masmow Marrow
{cm) L tvpe L type naTow anly oaly
U type U twpe stafr  landing
Double bed 137198203 96,5 111.E 686 - -
box spring
Drressing table 56 122 =76 737 73.7 3.7 - -
Davan-club 106 = 218 = 84 142.2 142.2 101.6 91.4 111.8
Davan-average 9l = 203 = T6 132 132 859 - -
Piano-concert 274 = 163 = 60 142.2 142.2 96.5 9.4 1.6
grand
Piano-draving 221 = 157 = 46 116.8 1168 914 = =
OO grand
Sideboard 53w 152 = 97 76,2 T6.2 T6.2 - -
Buffet RO = 90 = 193 1219 121.9 6.4 - -
Diresser 53 x 153 « 162 132 106.7 1016 914 118
Tahle (6 people) 106 = 152 = 76 6.5 6.5 6.5 914 101.6
Table (8 people) 106« 213 = 76 142.2 132.1 065 914 101.6
‘Table (10 peaple) 1932 142.2 142.2 ol4 - -
Diesk-slop top T6 = 122 = 99 o1 065 6.5 914 101.6
Desk-flat 1op 01 = 183 = 76 oo 1 065 055 = -
Desk-sxecutive's Of = 183 = 76 177 177 Q4 914 965
Trunk-wanirobe 5B = 76 = 109 3.7 77 137 - -
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Figure 1.7. A wead-niser
diagram (Time-saver's
Standards 1991L
Dimensions are accurae o
hatf-full size, thus, reading
can be made directly
withoal need for
calculation

Figure 1.5, Helalionship
between rise and going
{with compliments ol the
British Standsrds BS5395,
1977},

Mgges;

1. Steps to find the proper riser for o given tread. Read tread fine to a given width and sebect
rser gl intersection,

2 To find proper tead for a given riser: Select riser 1o neasest 3 mm and read read whdih
i nearest 13 mm {or mesrest & o by interpalation) at intersection with tread line.

3 To find wwesd and riser for glvem beight and ron of stalr scale mon of siair on inead
line. Diraw flight w fight height ai same scale. Draw pitch of stair Where pitch intersects
hyperbola, measuse riser (21 hall-full size) o read line. Resd bread widih directly or measure
al healf-full size.

4. To find run of stair for given height, tread and riser select riser. Conmect inlersection
at hyperbola with O on tread line, this, establishing a pitch. Draw Right te Aight height 1o
scale, intersecting plich and perpendicular to tread Hne, Run Is found & same scale as height
o trend line from O v imersection of fighs o fight heighe.

N\
jhﬁh.
'h.,‘.‘
-
"-r—l :%T“-I"h“
225 '-r.r-' !. .“'hn.“-
i-" ! 1 | 1
"__,4-"" { I
| 168
~ g | | 125 (mm)
- = i | L
Allowable riff of stair ! (B2 ‘5 it P
| 2 - 1 Riser
.-"'f l | i | | j |
PPN K S E |
25 50 75 100 125 150 175 200 225 250 2 Tread

]

75 300 325 350 375 400
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Figure 1.9 Thres fighis
stairs-position of Landing
heams,

Figure 1,000 A cut out
string with balusters

Figare 1.11. Wooden
alustrades.

g T

l. : J_ J_t-_.l ] Loading beam
- s 1

1 I Stringer 1t fean

: }  beams t:'.'.:i,u

| |

| b T
A |

(1) Hedght of balastrade
(2} Newel
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a) Balustrade

Figure 1,12, Seeel
balustrade.

1.2.4 Free-standing stairs and their reinforcement layouts

Some of the free standing stairs have been described in Section 1.2.
This section is devoted entirely to this type of stairs in reinforced con-
crete. The support arrangement influences the reinforcement layout. Fig-
ure 1.13(a) shows the cross section detail of a staircase supported on a
central beam. Since each side of the staircase is acting as a cantilever,
the main reinforcement is placed on top with distribution steel. The en-
tire cross section looks like a T-beam. Figures 1.13(a) and 1.13(b) give
reinforcement for the sectional elevation and the plan of a straight stair-
flight supported at each end by cross beams lying between the flight
and the landings. Figure 1.13(c) shows the reinforcement detail when
the cross beams are placed at the end of the landing. When the top
landing is supported by the brick-wall, Figure 1.13(c) is modified and
this is shown in Figure 1.13(d). When the flight is supported on side
beams, the reinforcement details are shown in Figure 1.13(e). It is es-
sential o mention various types of concrete steps, namely the cast-in-situ
and precast concrete steps. They are self evident in Figures 1.13(f) and
1.13(g). Straight stair-flights and landings supported by side or cen-
tre beams as shown in Figure 1.13(h) will require cranked beams. The
structural details depend on the ratio between horizontal sections and
the sloping section. Figure 1.14 shows the siringer beams reinforce-
ment layout for a two-flight staircase with landing. It is interesting to
note the reinforcement layout for the downstand part of the stringer
beams.
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Top reinforcement
Stimop details
a) Staircase on ceniral beam
Edge of Noor slab
H Bars details :
' =t
S & T
i { =
| H ‘ot
' 'Ed“ H

of floor slab Mam

by Seraight stair flight-contimeous over
landing beamsa

Brick work

in beams

&) Staircase on side beams

c) Straight stair flight-landings with
cross beams ai ends
Edge of landing
in brickwork

o

d) Struight stair flight on brickwark

Figure 1.13. Reinforcement for free-standing siairs.

T
ARNEEEE - an™,

hj Cranked beams
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» sl to support
hef
i

F:ig'l.q': 1. 14, Layout and
rednforcemsent details of
stringer beams in relation
1o the main reinforcement
of stairs.

; e
Links {mm Dmilnfnm: iswwm

1.2.5 Data for geomeiric stairways

A bref introduction to these staircases is given in Section 1.1. It is
vital to give brief data on spiral/helical staircases. These staircases are
manufactured in a variety of diameters. The most common materials for
tread and platform are steel, aluminium and wood. Steel and aluminiom
can be smooth plate, checker plate, pan or tray type and bar. A variety of
hardwoods can be used. For exterior or wel area interiors zinc-chromated
rust inhibitor, black acrylic enamel and black epoxy are usual. Platform
dimensions usually are 2" (50 mm) larger than the stair radius. Table 1.3
gives specifications for spiral and helical stairs, Where horse-shoe shapes

Table 1.3. Specifications for spiral/helical stairs parameters.

Driameter (cm)

101.1 121.% 132.0 152.4 1626 182.9 193.0 2133 43,8

Centre column (cmj
Weight (kg)

Tread detail A’ {cm)
Tread detail B' {cm)
27 tread deail C' fom)
27 tread detail D' {cm)
30 tread degail C° {cm)
30 rread detail D° {em)
Landing size {(cm)

.1 1.1 1] 10.1 10.1 101 10.1 16.8 16.8
LER!) e 106.6 113.4 1202 1405 147.4 197.3 2200
10.1 101 101 101 10.1 101 10.1 16.8 16.8

45.7 59 1.0 T 813 Bo4 9.4 106.7 121.9
135 8.3 308 37 ETR ] 41.5 4.8 S2.0 6.7

194 M3 21.0 22 1.6 19 20.0 254 26.7
26.7 e 4.6 9.7 415 48.0 0.5 SE4 G618
216 e na 25 9 i 238 289 202
559 6.0 711 8.3 B6.4 6.5 1006 1168 1320
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Table 1.3 (conl).

Framing dimensions (cm)

Stadr
diameter 2.54 5.08 T.62 1016 12.70
40 50.8 50.8 67.0 111.8 1118
a5 67.0 67.0 T1.1 132.0 1320
52 6.0 66,0 T6.2 1422 142.2
i1} 76.2 T4.2 B4 1626 162.6
: L] 21.3 B1.3 014 1727 172.7
tﬂ“ T2 1.4 01.4 101.6 193.0 193.0
- Th 0.5 6.5 106.7 3.2 3.2
‘r’ﬂA ] 1118 1118 1219 2337 1337
L] 121.9 1219 1320 2540 254.0
27 riser table 30 riser table

Finish Moor Mumber Circle Findzh floor Mumber
hezighit {2m) of sieps degres bezight {cm) of steps

8 6-243.8 i1 ) 215.9-241.3 9
246.4-264.2 12 3 243.8-264.2 10
266, 7-284.5 13 351 266.7-289.6 11
Z87.0-304.8 14 LTk 292.1-312.4 12
M07.3-325.1 15 4015 315.0-337.8 13
31.9-3454 16 412 34043607 4
348.0-305.8 17 459 363.2-386.1 15
368, 3-3660.0 18 486 3B8.6-408.9 16
JE8.6-406.4 19 513 411.5-434.3 17
418 94267 20 Sddy 436.9-457.2 18

M’,=§: load x r}

) Reinforcement details of tresds and columns

Formalas
G (owter going) = 2{r; — 2707 ) sin B2

Clear headroom = r; — rp, where v is the radias of the column or post al the centre,

G (inner going) = 2(r, — 270"} sin /2

Clear headroom: 2H; = hyp(d/8) = tp, where ¢ = the angle of rolation 31 a distance along radius, 6 = the angle of taper
of tread, fy = the fse, i = the thickness of landing.

Minimum splayed siraight lemgth L = B + /3 = bearing,
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are involved, the data for helical stairs circular in plan are modified to
include the geometry of the inclined straight arms. The data collected are
from countries such as Britain, Spain, USA, Germany, Sweden, Pakistan,
India, Italy, Turkey and Japan.

1.3 LOADS AND LOAD COMBINATIONS

Loads and their combinations vary from one country to another. The
partial safety factors associated with these loads vary as well and they
largely depend on whether the stairs are analysed by the elastic, lim-
it state, strength reduction and other concepts. In general, it is easy 1o
compute dead loads and loads due to self weight and finishes. The dis-
agreements are on the imposed loads (3 kN/m® to 5 kN/m®) and the
partial safety factors for loads and matenals. Several examples in the
text will indicate this dilemma. The general opinion is that steps should
be loaded also with concentrated loads. The British practice is to check
individual treads by placing on them two loads of 0.9 kN at 300 mm
spacing and placed symmetrically about the centre line of the tread. For
details individual codes shall be consulted,

1.4 MATERIALS AND STRESSES

For materials and their allowable stresses, individoal codes are referred
1o, In the absence of such codes(s), Table 1.4 should be consulted for
the preliminary analysis and design of staircases.

1.5 ADDITIONAL SPECIFICATIONS FOR THE REINFORCEMENT
OF CONCRETE STAIRS

1.5.1 Reinforcement size

A standard range of bars and sizes is available for use in reinforced
concrete, They may be hot-rofled {mild steel, high vield steel) or cold
worked (high yield steel). Bars are made in a range of diameters from
8 to 40 mm. Special sizes of 6 and 50 mm are seldom available. The
specification for steel covers chemical composition. Tensile strength,
ductility, bond strength, weldability and cross-section area can be found
in various codes.

1.5.2 Fabric

Fabric reinforcement is manufactured to BS4483 and to ASTM 1992
requirements. There are four s of fabric made from hard drawn mild
steel wire of f, = 485 N/mm* or from cold-worked high yield bars:
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a} Square mesh fabric: regular bars of lightweight (A type). They are
used in walls and slabs.
b) Structural fabric: main wires 100 mm crs (B type) cross section of

wires 200 mm cr5.

¢} Long mesh fabric: main wires 100 mm crs (C type) cross wires

406} mm ors.

d) Wrapping fabric: lightweight square mesh (D type) encased con-
ditions or fire resistance main wire cross-sectional area 252 mm®, f, =

250 N/mm?Z,

Table 1.5 gives the necessary data for bars and fabric reinforcement.

Table 1.4. Maberials and stresses: stesl, concrete. aluminiam and tmber.

Country Steel Concrese I
UK a) steel bars C25 1o C40 grade B55328
hot relled: f, = 250 N/mm? feo =25 Nim? 1o 40 N/ m? BS59%0
high yield: fy = 460 N/mm’ E;{average) = 20 N/m? BSRI10
E, = 200 GN/m?; v = 0.3 p=0151w02 BS5648
b} sieel sections and plates - varies fiom 1710 of C in generd
unit meass = 2400 kgfm?
= 21,6 kM /e’
USA a) steel bars {psi) grade [ = eylindrical concrete ACIHIA
yield stress f, = 40,000 srength 3000, 4000 (psi}; AISC Specifications
U000 G000 B0,000 E. =3 = 10f (pai) (20 kN/mm?) 1995
b} steel sections and plates v 015 10 0.2 ASTM Specifications
Typical stee! (values in Ksi) 1995
AJ6-30-36; 48-60
AST242.65; 63.70
AST2-42-65; 75-80
1= 0Ly & = shear modulas
= 11,000 Ks
E, = 30w 10F (psi) (200 kN/mm*)
EUROPE a) steel bars S22, 5400, 5504 C127 15 tor 506D Euwrocode 2
by steel sections and plates fes = 12 Wimm? 1o 50 N/mm? DOENY 1992
Felf; Fed30 w Fes10 i = 1.6 Mimm® w0 4.1 N/mm?
yield stress £, 235 M/mm® to E, = 20 GM/m? Eurocode 3
332 M/ mm? o =102 DDENY 1993
Ultimate: stress fy = 360 N/mm” to EN 10025
470 N/ mm?
E, = 200 GN/m?; v = 0.3
CANADA steel bars N/mm? fo = 20 Nimm? or 30 Nimm? C8A A3 MAR4

grade M 350 400
Sy 400 350 40

f; = 400 550 600
E, = 200 GM/m?
v i3

steel sections and

plates same as USA

E. = 30 GMN/mm*
p=0.11wd2
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Table 1.4 (cont).
Coumiry AT T Timber 1
UK same as USA class 8 1o 87 - 37.5 to 15 N/mm? BS3268
shear 2 10 4 Nfmm?; class SC3 and SC4
o bending = 7.5 M/ mm?
¢ compression = 2.4 MY mm?
s = 0.7 N/mm?®
Emeas = 9900 N/mm®
Enjn = 6600 N/mm?
hasdwopd T3 = T3 post
o bending = 18.1 N/ mm?
E = 13,600 N/ mm*
G 850 1 570 N mm?
USA AST™
6061-H116 t = 483 N/mm?; f, = 370 N/mm? 2024-7351"
¢ = 140 Nfmm® §=1323 Nimm?; f, = W& N/mm? 6061-7651%
¢ = 150 N/ mm* f = 590 N/mm*; f, = 542 N/mm? 075-7651%
G shear = 108 N/imm?
Fy (yield) = 286 N/ma®
o bending = 133 Mimm?
EUROPE  Not avuilable hardwood softwood Eurocode 5
=C14 w C4D = D30 to D70 ECS
Sm i =14 to 40 =30 to 70
frot =Bw24 =18 o 42
Jeog =161t 26 =13 o 24
Toi CRR AR = 3.0 10 6.0
Epmean =T000 10 14,000 = 10,000 1o 20,000
Goean =440 10 880 =600 1o 1250
CANADA samie 3 LISA o bending = 11.6 to 8.58 N/mm® CEA 0121

¢ compression = T.99 10 5,04 Nimm*
H shear = 0,36 to 0.38 N/mm®

E = 10,550 to 4150 N/ mm®

& = 660 1o 570 N/mm?

=01 o 0.3

fe = compresgive stresses; f; = ¢ tensile stress; Cl = Code identification; C (Cube strength) = f,; "o = stress in
bending; T ¢ = tensile siress; ¥ f, = stress at yield. For all the following, values are in N/mam®: fmi = siress in bending:
Srop o lension 0 0 graing feqp = compression & (0 grang f g o= shear; Eupea o mean Toung's Modelus & o prain:

Gygesn = Miean shear modualus.

1.5.3 Cover to reinforcemient

The distance betwesn the outermost bars and the concrete face is termed

the cover. The cover provides profection against corrosion, fire and other

accidental loads. For the bond to be effective cover is needed. Various

concrete codes allow grouping or bundling of bars. In this case the
perimeter around a bundle determines the equivalent area of a “single

bar'. The cover also depends on the grade of concrete and the full range
of exposure conditions.
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Table 1.5. Bars and fabric reinforcement with concrede cover.

Bar designalion
Britain. Europe, Japan and 6 8 0O 12 MW W - 5 - 2 - 4 - -
Russia bar types (mm)
U'SA, Canada, 5. Amegica bar
types (mm}) denoted by # - = #1 #4 ®5 ® 7 NE W KD w11 - #l4 A1E
Area {mm*) 28 50 7B 113 X 314 387 481 645 B4 1006 1257 1457 1581
Mesh rype Size of wires (mm)  Area (mm®) Weight (kg m®)
main cross Tmiin CTOSS
1. Square mesh fabric (200 200)
A3 10 10 393 .16
A252 ] & 252 308
Al93 7 T 193 02
Alal 6 ] 147 rie.r]
AR 5 5 Q& 154
2, Structural fabrie (100 2005
B1131 12 & 1131 152 10540
B783 10 & THS 252 814
B503 ] ] 503 252 5.93
B3g6 7 7 385 193 4.53
B283 ] 7 283 193 373
B1%6 5 7 196 193 .05
3, Loog mesh fabric (1005 400)
CTas i ] TS 0.8 6.72
CBRI6 W & 636 T0.8 5.55
503 g 5 S03 49,0 434
CARS T 5 385 49.0 3.41
O3 f 5 283 49 0 161
4. Wrapping fabric 15 3
D9 (100 LN 49 49 il
DA (2000 20 0] b 1.54
Conditions of expiosure Mominal cover (mm}
Mild 25 20 F 20 F. |
Muoderate - 33 30 2% 20
Severe = - A 30 15
Very severe - - S0+ 40 30
Exireme = - - L 30
Water/ comient ratio Q.65 (.60 {153 D50 045
Coacrete grade Cx Cas C40 Cds C50

*All values bnthe table are for gy mansimam aggregate sizs of 20 mm,

**To be reduced 10 15 mm provided hgy > 15 mm.

=% Alr entracnmies should be used when concrete is subject 1o freezing.
* Could be increased further if nseded.




CHAPTER 2

Structural analysis of staircases:
Classical methods

2.1 INTRODUCTION

This chapter deals with classical methods of analysis. The author has
reproduced these methods clearly by adopting uniform symbols. Wher-
ever possible the reader is given a positive basis for understanding these
methods by explaining the basic philosophy of each method and the
assumptions associated with it. Examples are given of these methods
so that students and practising engineers can easily translate them in-
to practical problems. Most of these methods are based on the Strain
Energy concept.

2.2 METHODS FOR FREE STANDING STAIRS

These are the following: Bangash Generalised Method based on Gould's
(1963) numerical solution (uniform loads with various boundary con-
ditions); Taleb’s Method (1964) symmetrical and asymmetrical loads;
Methods of Space Intersections of Plates; Liebenberg Method (1956,
1960, 1962) and Siev's Method (1962, 1963).

2.3 METHODS FOR HELICAL STAIRS

For helical stairs, two methods are used: Morgan's Method (1960) and
Cohen's Method (1955).

2.4 A GENERALISED ANALYSIS OF A CANTILEVER
STAIRCASE

The author has developed a generalised analysis based on the original
work done by Gould P (Journal of the American Concrete Institute,
1963) which is summarised in Section 2.4.2. Here the Strain Energy
principle is adopted. The staircase is considered as a frame and the
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moment at the intermediate landings is ransferred between the legs by
torsion developed through the landing. This method depends on the type
of support conditions at the upper landing. In order that the staircase be-
haves as a frame, vertical and horizontal forces must also be transmitted
between the legs of the staircase through the landing. These should act
through the centre line of the landing parallel to the longitudinal axis
of the legs and are eccentric on the legs. The additional bending and
torsional moments at the intersection of flights and landing have only a
minor effect on the design and are thus ignored.

2.4.1 Notation for the analysis

b = width of the supporting beam;

H = horizontal reaction;

Hy, Hz = heights;

E = modulus of elasticity (Young's modulus);
Ky = horizontal spring constant

Ky = rotational spring constant } kN/m or b, kip/fi;
Ky = vertical spring constant

L = length;

M = bending moment;

R = reaction;

T = torsional moment;

L = siTain €nergy.

2.4.2 Gouid's method (July 1963)

Notation for the analysis

b = width of intermediate landing, in;

b = long dimension of the tie or hoop, in;

I = width of supporting beam, in;

d = dapth of stair slab, in;

¢ = Mp/P measured from centroid of base, in;

g = distance from centraid of footing to line of action of P/, in;

fi = gllowable stress in reinforcament, psi;

h = depth of intermediate landing, in;

R = short dimension of the tie or hoop, in;

5 = spacing of bes in landing, in;

I = depth of supporting beam, in;

w = width of stair slab, ft;

Ag = area of horizontal steel perpendicular to ties in intermediate
landing, sqim,

Agy = area of all shear reinforcement at a given section in the inter-
mediate landing, i.e. the area of two bars in the hoop, sq in;

Cy = 42+ EIf1.3Kvy;

Ca = 8754+ EIl/13Ky;

Cs = 15834 EI/1.3K y;

E = modulus of elasticity, kips par sq in;

F = ratio of actual length to horizontal projection;
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A,
Ay,

LYTA

LI}]

T I T |

integration factor;

integration factar;

shearing modulus, Kips per sq in;

horizontal reaction at nth support, kips;

moment of inertia of the stair slab, in®:;

moment of inertia of the supporting beam, about the horizontal
avis, in*;

moment of inertia of the supparting beam, about the vertical
axis, in*;

horizontal spring constant of support, kips per ft;

rotational spring constant of support, fi-kips per radian;
vertical spring constant of support, Kips per fi;

length of the supparting beam, ft;

banding momant at base of staircase, ft-kips;

bending moment at Point m in Member mn, fi-kips;

axial load on the basa of the staircase, kips;

equivalent axial load applied to the footing at an eccentricity €',
kips;

torsional momant at intermadiate landing, f-kips;

strain anergy due to bending, f-kips;

vertical reaction at nth support, kips;

shear at m in Member mn, kips;

alastic torsion theary constants for rectangular sections;

anghe of twist per unit length, radians;
total angle of twist, radians;

horizontal deflection of nth support, in;
vertical deflaction of nth support, in;
rotation of nth support, radians;
torsional shear stress, psi.

Torsion at infermeadiale Ending
The maximum tersional shear stress can be approximated by the formula:

T
“= abht
The coefficient « is itself proportional to b/ b but approaches a limit of (.333
for larga valuas of b/ h.
2 Mz
Mao =T 008

BA = 3
2

Mper=T — m&TE

Mgy +Mge =2T
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Mpa + Mpe

Tr= 3

10.0° A0

40

1.31'

= e —

4 05"

Elevafion of cantilever staircase showing dimansions and loans

*>>
S

Suppori condifions for Cases A through D
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Case A - vertical reaction at point A

j{n]
v 1
— = — | {Vay — 0.496x%)x dx
av, Eff'[‘“" Jx
)

5.83
1
+ 2 f [0.496x7 + 16.4x — 36.6 4 V4 (10 — x)][10 — x]dx
o

=0
After the necessary integration has bean parformed:
au
—Efl = —B36 4+ 642V, =0
aVy
Hence,
Va = 1.33 kips

Mp=760+4.17 x 1.33 = &1 fi-kips

Vp = 22,18 = 1.33 = 20.85 kips

Mga = 10 x 1.33 — 49.6 = 36.3 fi-kips (clockwise)
Mgp = 10 x 1.33 = 36.6 = 23.3 ft-kips (anticlockwisa)

r= 2834363 g 8 trkips

cayﬂ—huzn:mw:mdmﬁmfmmﬁmarpow.n
Y Mp=—49.6+ 117 - 8.04H, + 10V4 =0

Y Mp=-761-36+417V4 — 13H, =0
Hy = 9.10 kips
Va = 11.08 kips
Vp=22.18— 11.08 = 11.10 kips
Mga = 11.7 fi-kips (clockwisa)
Mgp = 1.3 ft-kips (clockwisa)
11.7-13

T = ————— = 5.2 fi-kips
2

Summary of reactions and moments.
Casa v.l-. FFI HI- H.ll HFL Hlll M.ﬂl- Tn-

KipS Kips mIps frkips fi-ips f-kips fi-bips fi-hips

[antbciockwisa) (cockwisa) [anEciockatsa)

A 1.33 20.85 - - B81.00 3630 233 2080
B 11,08 1190 210 - 380 11,708 1,30 .20
[ 12.00 10.08 aas 7.80 2220 8.58 402 248
o 1.27 2001 = - 8130 36,80 2380 3040
E 6.35 15.83 4.95 - 38.00 25,90 1290 1540
F 858 16.68 502 1.40 36890 25.40 1240 1880
G - 2218 - - T6.00 45,80 38,80 43,90
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W kin' ]

“ 5T /

b
8) . 10.0 4.0
A INTEGRATION FACTORS
P
ﬂ.ifhﬂl“l = -id
& i F,.;ﬁ.i,a
0892 k1 HE 182 kM
W
1 3
o

5.3

M= F_ﬂr—ﬂ.mgz

[_;.n:u ) ﬁ' x

A

¥
SIGN COMVENTION
Compression on cutside face
raprassnts posiive momant.

Vigi = V= 5.92

v
F‘[ 8% 110 Via— 40,8 = Mgy
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&) Il,~1w,-4n.s @ opEzkt 8
'I-:n-i-ﬂT 1.62 k11 V10 Vi~ 388 = Mo
& T'.»:-.—iu
£ fa0=1.
n? p M= (10 Wy — 36.8) - (Vi -16.4)x+ 0.
\IWH:-H.I- w = Vil 10 = o) = 366 + 16,4x + 0458627
ahd
Vy—=184 Fﬂ.--ﬂﬂ-'-vﬁr m-‘ln—l

at x=583
Mo =417 Vy+ 78

Frea-bady diagrams of slaircass membars assuming A vertical raaction &t Suppen 4

8 SIGN CONVENTION
+ "y mernber

Ba=0.992 - %F. 124

B 0,052 - ’%’.u

Bo=t182- St

c

-2
AN tose
Va ;
1.7
&
E Mg (of ioads)
8482 -5=496
L Mp (of loads)
9.82 - 083 = BE5
648 - T H3= 5070

5.80 - 2.81 = 17.00 ;
75.9% say 78"%
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Case C = fixed support af poirt A
The method of analysis is exactly the same as that of Case B so0 only the
results are presanted.

Vi = 12.0kips
Vp = 10.08 kips
Hy = 8.89 kips

Mpa = 8.98 ft-kips
Mep = 4.02 fi-Kips
.98 —4.02
T =1 T — 2143 H—m
Case D = verlical reaction of lexible support af point A
This case is similar to Case A excep! that the support at point A is flaxible.
Assuma that the support may be represented by a spring such that

Va
AV,
v vy
Wy K
(—B56 +642V4)1.3 = —EEI
Ky

856
Va= ET
2
642+ 13Ky

B30 El
Vi=—; ) =0642
A= ‘ 13Ky

Ky =

Case E - vertical and horizontal reactions on flexibée supports af paint A
This case is similar to Case B. However, since deflections are invalved, the
miathod of solution will be different. The supports will be treated as springs
with constants Ky and K.
Castiglianc's theoram will then become:

a  Va
avy Ky
W __Ha

daHs Ky
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1]
% = Elf (Vax — 0.804Hyx — 0.496x")x dx
0
5.83
-E'-f [0.496x" + 16.4x — 36.6
1]
+ Va(l0 — x) + Ha(—8.04 — 0.85x)](10 — x) dx
Va
T Kn
% E{ 870 — 689H 4 + 642V,) = —:—:
and
;I% - —(-sm 689H, + 642Vy) = —E—:
where,
Hy = 598,000 + 310C,
C1C2 — 474,000
V, = 213,000 4 870C4
CyCz — 474,000
C2 =875+ f;H
10
U if (Vax — 0.804Hax — 0.496x7)(—0.804x) dx
aHy EIJ V' A

0
A3
—ff[ﬂ.496x1+lﬁ.4x-3ﬁ.ﬁ+h{lﬂ—1]

+ Ha(—8.04 — 0.85x)][~8.04 — 0.B5x] dx

Case F - partial fixity at point A

it restraint to rotation proportional to the angle of twist is assumed at
point A (Ky = M/, the effect of the moment may be accounted for
in & similar manner as the elastic deflections of tha supports. The equations
of Case E - may easily be modified by the addition of a M 4-term 1o the
momant exprassions. An additional equation is obtained from this condition.
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x
r 0.852 k'

M K M= Vg 324 1, - 0.002%

Ha

) Mau = 10V -8 044, 48
I-"" - 'Ir,. =8.82

Hy—=
e Mgp = 10V, —B.04H, - 366

Wap = ¥y =184

E.
e s
Vo
u,.{m'.-a-u.ﬂ-lm-aums]-{ﬁ-‘.u}x-m}ﬁx
- 09924
= 049657 + 16.4x — 3606 + Vil 10 = & + Hyf-8.04 - 0.85x)

lrl.'.il

Mp = 41TV, — 13H, + T8 10— x

Frasi=bodly diagrams of Slircass msmbens assuming & Nesdble verienl and harisonsal reaction st Suppart A

The three equations are then

Ly

d s 1

P f (Vax —0.804Hx — 049627 — My)(~1) dx
Li]

583
1
+E f [ﬂ.dﬂ'ﬁ.‘ri+ l6dx — 366 + V(10 —x)
)

+ Ha(=8.04 — 0.85x) — My ](—1)dx
My

Ku




A peneralised analysis of a cantilever staircase 33

1]

at 1

=— | (Vax -0, — 0.496x% —

Ve E!f{,-,.: 0.804Hax — 0.496x% — My )x dr
0

583
+ Elf f [0.496x% + 16.4x = 36.6 4 V4(10 — x)
LH]
+ Ha(—8.04 — 0.85x) — M4 ](10 — x) dx
Va
Ky

10
alr 1
T f {F,q.t — DB Hyx - 0.496x2 — M*}{—ﬂ.ﬁmx}dx
A
i

5.E3
1
+ 57 f [0.496x + 16.4x — 36.6+ V4(10 — x)
]

+ Ha(—8.04 —0.85x) — M, ]{—E.EH —(0.85x)dx
Hy
Kn
Aftar the necessary integrations have been performed, the equations simplify
inta the following exprassions.

1.3 My
— (0.6 —01.3V 1M A4H 15.83M:) = ———
E.'{‘ A+ A+ Al &
13 Vi
— = Vi — —g]. -
E!{ BT+ 642V — 6BOH — 91.3M 1) Ky

1.3 H
7310+ 688V, + 8T5Hy + 101.5M,) = _K_*

Fram these expressions we obtain:

Vi =T, 210,000 4 BTOC 2 Cy -+ 214,000 — 6080C
12,750,000 = 10,300C; — 8330C; — 474, 000C; + C;C3Cy

Hy = 14,850,000 + 6780C, 4 598,000C; + 310C,C5
12,750,000 — 10,300C; — 8330C; — 474,000C3 + C)C2Cs

M+ = —9.900,000 — 31,500C) +79,500C; - 66.6C;C;
A = 12,750,000 — 10,300C; — 8350C; — 474,000C3 + C1C2C5

where,
El
L3K m

C; =1583+
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The values for reactions and momants are summarized in the table in Case E.
Thea results obtained, considering the partial fixity against rotation, are simikar
to that of Case E, indicating that the added restraint has only a small influence
on the momants and reactions.

Case G — free and al point A

The results may be obtained from statistics and are tabulated in the table in
Case E, This case is presented to show the influence of the various restraints
on the upper lag.
FProparties of supporting mambers
Supporting beam. For Cases D, E and F a supporting beam is assumed with
the: foliowing dimensions and section properties.

Size: ¢ = 12in; ¢ = 18 in; L = 20 ft simple span restrainad against
wist at ends: E = 3 = 10° kips persqin: G = 1 = 10° kips per sq in;
Ing = 5830 in*; Iy, = 2590 in*

48 E]
KEy= % = 324 kips per f
Ky = 4Ef;b; = 732 kips per ft

Torsion = tﬁrc3-ﬂ
The 20-ft beam will act as two 10-ft cantilevers fixed against rotation;
i 1
T = = = =

L M

tjc = 1.5 p = 0.196 and Ky = 4240 fi-kips per radian for each 10-ft
cantilever or 8480 fi-kips par radian total.

Staircase:

w=4f, d=635in
_ 4Ex6x5
- 12
Constants:

I = 1100 #*

22,900
C, =642 4 —— — — 666
‘ MEEREED

22,900
1.3 = 324

22,900

l:'::, = 1583 + m = EIIIEIJI'IE'
Typical design (Case A)
Tovsional revnforcemearnt

From Figure 5b and Reference 3
T = 9.8 fi-kips
bih=13104
o = 0.26Th = 0.845

O = BT5 4+ =929ﬂ.3
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a)
[ oome
Hy I T I
@ M = Viax - i - 0.992 5 - My
My = Ky ﬂll
_ M ﬁ--n.nmx
I'-’n l,)u.,.-mv,.-mm-m aiﬁ--i
Vigy = [y —09.92
B
o ™

FA™ 2 pgy= 10V~ B.04H, ~ 36,8
1 Vo= ¥y — 164

° oosekt |

My = {10V~ B.O4H, — My~ D6.8) — (Vi — 16.4) x- Ha $58 x
+m§
= CLASERT + VB = B8 + Val10 = &) + {=8.04 = 01, BSx] = My

%-m-x

ﬁ--m-nn:
aﬂ"‘

)=113|:hs|

n\._.. M= 417V = 18Hy = My + T

1 (19.311} x 12
w

T D267\ 15.752 x 48
Ties

Ts
Agy = m
Then,
Ay LB R
==
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For #4 ties

Ay =2 x (0L 20 =0403qin

;:ﬂ'mj w (040 3 20,000 x 45 = 12
29 800 = 12

Hence, for design use #4 lies al B in.

Horizonial bars
For horizontal bars, an equal volume of steeal s provided.

= 104 in

B+ i 0.40
As|=ri“( N )= (45 +12) = 286 sqin
Hence, for design use 10 #5 = 3.10 sgin.

Additianal rainforcement will ba required near the junction for one-half the
torsional moment:

Bih=10 & =12h
=085 K =12
Ties
Ts 0520800 = 12=48
= = =} i
A = N~ 0B5 x 20000 x 12 x 12~ o0sain
This reinforcement is provided by #4 bars at 8 in alternale spacing.

Horizontal bars

{¥.
A,F%{’ x% 24 = 1.20 sq in

For design use 2 #7 bars.

E
=1
T -3
E
8 c 7
W
-
a] ]
b=4'-0
Typical torsional reinforcoment be4B*
h=15.75*
b'= 45"

h'= 12"
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2.4.3 Case studies: Bangash generalised analysis based on Gould

(July 1963)
Case I vertical reactions ar D
al! Mdx oM
sINCe
1 Mdx
== 2.2
2] TEI 2.2)
3
M, = moment at a distance x = Kpx -m'_f (2.3)
Figure 2.1{a) Rg = Rp —w Lz Rp = Ry + wil3 (2.4)
|’.|.'||.[.§_
Mga = Rplz - 3 (2.5)
Figures 2.1{b) and (b}
reaction at Ik
Rp —wLa
Lﬂ-jL%
Mpg = Rply - =3
L {2.6)
My — mzz 2

1
Mag = RpLy — i(mij — wpld)
resction at A:

1
Mag = RpLy - s(@1L{ - 0l3) = Vp —(w3la + ;ply)  (27)

wpl)l  wall
M, = I:Rnl.z—[ L 3]}—[RD—{WLLE+WEL3”

2 2
m1.=1
2
u.'u].i.‘it mzLi Dy x?
Bp(l+—x)Y— — = — 2.
pllz—x) [ 2 3 577 (2.8)
dM
o = E_I—_:' {l.g}
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t}ﬂ|_;'€ ay / unit length

%)

Bg=Rp—inia

Iy = mhy; Fy = nhy; &y, by ase step heights

Figure 2|, A cantilever staircase under loads.

e
Rn = + )

A
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M 4 g from the above equation is written as (x = L)

m]Lf B ﬁ.‘lzL% +lm]_;1
2 2 2 2

Muyg =1Lz — L{)Rp - [

1 2
= Rp(La— Lp) — E[m.f.? — oL} + = } (2.10)

Ly
1 mlxl quf mgL%
+E7 [T+{Mt+m}1— 5 "3~
LH
+ Rp(La—x)dx =0
au wily  Rp g o 1
e = s B T
ShFT 7 1| 6 3 tH R 1"'3]
) , (2.11)
+ 2{:.&1+W1-=2L2I+L1 T+L1 =0
bt
aU Rp. 4 m:.;)
El— = =2(Ly)* - [ =2
3Rp -~ 3 Y ( 16

Hence Rp can now be evaluated from Equation (2.11}.

By substituting the value of Kp into Equation (2.10) the value of
M4 g is computed.

The other values are written as

Ra=wi{lz+ L)) +w2ls— Rp (2.12)
mlL%

Mpgp = Rpla — T and Mgy = Map (2.13)

is already calculated

wil?  wals
Mpa + [RﬂLz - ._2_' - _E_.EJ
(2.14)

Torque T = 3

from statics the values of Hp can be evaluated.
Gould {1963) has introduced the effects of a vertical flexible support

at D.
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Case Il {Case B of Gould): vertical reaction when the support D

is flexible

Here Gould provides a flexible support at [, Let K be the stiffness of
the spring. Case I is now modified.

Rp
f = — 2.1
Sy (2.13)
aff Rp
——— = — 2.1
i Rp K, (2-16)

hence

R”Ef— [ ({l.:qf.-z ) L3(—5u;||]2+ 4)

(2.17)

-

+

EL 3
{w1+m1+2Lﬂ+Ll( 3 +L) =10

F)
where C — intergrating factor
c=c= b C=y= 22 (2.17A)

Rp can now easily be calculated from Egquation (2.17).

Case Il {Case C of Gould): vertical and horizontal reactions on
flexible supports at D

Agein Gould suggests two flexible supports. A reference is made 1o
Figure 2.1{(e) to (g) and generalised equations are given by

all  =Rp
al —Hp
—— 2.19
afHn Ky (2.19)
Mgn = RplLy — HpHa (2.200)
m]LI
Rgp = Rp —wnLlz — T
Ho mlxl
M, = Rpx — —H
X nx I, 3
oM @2.21)
dRln
H'Mx Hl

HHD Lg
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i
J umnit M
mW - Hp

138.4

Mgl

Figuare 1.1 {cont. ).
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L? L3
Mga = Rply — HpHy — % - %l (2.22)
Rgs = Rp — (w) L3 + wal3) (2.23)
L? L2
M; = RpL;— HpH; - e B
2 2
H x?
— {Rp — (w1 L2 + wals))x - HDL—:; +wi5 (2.24)
aM,
=[x
aRp 2 TF
HM*' HI
e ()
aM,

- _ 2.25
My | (2.15)
Hence from Equations (2.18) and (2.19)

L.
w _ 1 f Rpx — (H. —ﬂ;)ff ot g
aRp ET) D CR T S
f “’”" + {wy L + wzL3)x
+Er
ol _walj 4 Rp(Ls —x)
—_— el
2 2 Bz
H -k
<+ Hﬂ(—Hz—]) (L —x)dx = . (2.26)
Ly Ky

lmlx

- — 5y (—H
EHD I[RBI (HiHpx—) 3 ( 1x}]

Eff[lmlx + (wy Ly + wyLy)x

(%5

2
+ p( Hs )]{Lz—x}ldr— —Hp (2.27
Ky

m Lz
2 )+ Ro(Ly — x)
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Case IV (Case D): vertical and horizontal reactions on flexible
supports (support F with partial fixity}
It is assumed that the restraint to rotation is proportional o the angle of
twist at support D{M /d) = K.

Case III is modified by adding the Mpg term to the moment ex-
pression. Again a generalised method is given, based on Gould (July
1963).

all _ Mpg
aMp ~ Ky
2
M, =Rpx — EHDI Il L Mpg (2.27)
L3 2
Figure 2.1(h)
a} M =X
8Rp
dMy
b) SHp —Hax
d M
=
) dMpg
I'.r.'l-].[.%
a8) Mpp = Rply - HyHp -~ ——
Ll.'uL?
b} Mpp=Rpl:— HHp - - (2.28)
wili  wald
¢) Mpe = RpLy— HyHp - (T’ - 73)
Figure 2.1{i)
m1L1 uuf.-z
My = [RpLa] — HyHp — Mps — (T’ -
wly  wyx?
—[RD—LW|L2+M=L3}—HEE3+ '1 ] (2.29)
EM; '&M_‘r H]_ 'aMI
= (L — x, =—H; - —, = -1 2.30
T 7 s *" 1" Mps (230
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Three equations are finally derived
La

aus 1 1 wyxs

Al ——— = - — o ———

{A) aMp EJ (RDI HaHpx 2732 Mpﬂ)[ 1y dx
0

| ] r.|,1;|_1:z
+Ef[ 7 + (e L2 + waLa)x
0

U}]LI mzL3
—( 3 2 )+Rp{£z—x}

H
+Hﬂ(—H1—L—Ix) MDH]{ 1ydx

= _ﬂ;‘: (2.31)
or
1 Mpp
E] —[CiRp + C1Hp + Caw 4 Cywz + CsL i Mpg| = "Ry (2.32)

whire

C1=2L1 + L)%, €y =2(—Hali + 2H L1 )Hp

.[.-1
Oy = 2(*!.%1.24- ﬁ‘{) Ci=mH=Ly=— L]L%], Cs=2HLy+ Ly

T
au 1 wyxt
Bl -~ HaHpx = —— = M
(B) Ry E!‘f(R”I AHpx m DH)IliT
0

Lz

+z [
E

2 L L3
I:bL + (Lo +wala)x — (E? - %)]
i

H
+ [RD{LI —x)+ Hpl —H, - L—'x]
l

—Mpa]{Li—x]dI =—— (2.34)

or

Ep

[Cﬁ.Rﬂ +CeHp + Cyuy +C9W1+Cm”ﬂﬂ'] “Xv

(2.35)

where

1
Cy = 5{1-? +L3) = LyLa(L; + L3)
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L
¢ Z_HILE(LH )u

3 2
C3=Lf(gl|+%_§h) I.]Lz
Cy = %L|L3(L;L3 -1}- "“;'1) - L.3L3 (2.36)
()
Cip =Ly (LT - )
(C) % = —% (Rm — HyHpx — Mﬂﬂ)(_ﬂgxm

—

S - E‘-'"‘.E"

2
2
|:ml— + (way Lo + wrly)x

El 4
n.u.[.f ugL% e
- 5 T3 piLl: —x)
H
—|—H::|.( HI—L—]I)—HDH]
1
H H
x (- Hl——'xm:——ﬂ (2.37)
Ky

ar

| H
—[CiRp + CrzHip + Ci3wy + Craen + C15Mpg) = ——% (2.38)
Er Ky
where,

L3 L? H| 1 La
Ciy==-H =1 L
il 2( 3 + 7 ) I.] (2 + 3 ) 2

L3 Hy L2 H L
Crp= H%(Lg+—l) [ ﬁ(ﬂg - ﬁ)

3 Ly LT A
L} THLY 19HLY Ll HnL:)
Cpym - Hy L (2.39)
1= g 12 43Ll+1(“+
Ly+ L3\ Lil3H, (-’-% L;f.s)
Cia = HalaL - —2 4 =2
14 by 5 3( 3 ) L 3 + 3

1 s HL3
Cis = E(HILI + 2 = 4 ELI)



40 Structural analvsis of staircases: Classical methods

EXAMPLE 2.1

Calculate reactions and moments for above cases using the following data for the
cantilever staincase:

Simirs:

Li=178 Hi =15 m

Ly=3048 m, H: =245 m
Lyw]Ilm

w) = 14.3 kN/m

wy = 23,64 kN/m on horizontal prajection
E =207 x 10° kN/m

CHimensions:

b =305 mm

L=6m

d w457 mm

G = 6.985 kN/m?

Joy = 1078 = 10° mm*

K =48/}

Kp =478 ENfm

Ky = 10,683 kN/m

total km/radian = 123,757 kN/m

total 2 No of g length of beam = 61,879 kN/m
half length =3 m

T = torsion = thdb’ G

B = width of stalrs = 1.X2 m

¢ o= (hickness of stairs = 165 mm = Dy

Table 2.1. Solubion for case stadies ol a cantilever slmncass,

Case 1 Case 11 Case I11 Case IV
Rp kN 539 565 28.25 20931
Ry kN o265 G300 T0.40 59,35
Mag kNm 100 IR LEE ] 51.53 S0L00
Map KNm 4920 50,00 31512 34.45
Mgq KNm A5.30 3241 17500 16.81
T kMm 4225 4120 26.31 25.63
Hp kN - - 2000 1333

MNoge: T w (Map + Mpa)/2,

25 A GENERALISED ANALYSIS OF STAIRS WITH
UNSUPPORTED INTERMEDIATE LANDING

2.5.1 Taleb's method (Sepiember 1964 )

This method is based on the principle of least work using equations of
equilibrium of the entire stair and hence obtaining expressions directly
for all redundants acting at the supports. In the plane of the flights shear,
tension and compression are ignored. The load cases inclede symmetri-
cally and unsymmetrically placed loads.
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Notation for the analysis

Ly, Hy = horizontal and vertical projections of fight length,
respectively;

Ly, B = width and breadth of landing, respectively;

Dy = thickness of stair slab (waist);

L, B = length and width of flight, respectively:

a = angle of inclination of flight;

Hy, Ry, Ry = reactions at lower and upper supports correspond-
ing to first system of Hp, Rp, R; coordinates;

My, My, M, = moments in the direction of the x, y and 7 axes,
respectively, corresponding to the first system of
coordinates (Fig. 2.2);

My, My, My = momenits at upper and lower supports, whose vec-
tors are parallel to the x, y and z;

Mz, My, Myz = axes of the first system of coordinates;

Ny, @, N3, (27 = reactions at upper and lower supports correspond-

ing to the second sysiem of coordinates (Fig. 2.3);

hM:I’m, My, HZ‘I moments at upper and lower supports, whose vec-

X2, My2, Mz tors are parallel to the X, ¥ and Z axes of the
second system of coordinates;

PPy = unit dead loads of flight and landing, respectively;
Py, Py, Ps = unit imposed loads on lower flight, upper flight
and landing, respectively;

E, G = moduli of elasticity and rigidity, respectively;

Iy, I = moments of inertia abut 1-1 and 2-2 axes, respec-
tively:

Ip = polar moment of inertia;

Ky... K5 = constants;

P = Py + Pasy).

A reference is made to Figure 2.2, the equilibrium of the entire stair can
be categorised as

a) EF;"=G= EFsz:ZFg

b} Ry =R2 (2.40)
¢€) Hp=Hs Rp=—Ra+ B PL +L3iB Py,s

aj) E.H'x =ﬂ=EMr:ﬂ=ZM3

1 3 ;
b) My:= My, —2H Hs+ 2B\ PLT+ L3B'P,
X X 14 + 58185+ L3B Puases) (2.41)

I P
¢l Myr= My + f(-ﬁ'g + ByLiPogn + EH]B P[.H.SJ)
Mzz = Mz + fHy

In this case Ly and H; are the same a5 Lo and &z, respectively. Where
Ly and Hy are different from Ly and M3, respectively, a reference is
made to case studies in Section 2.4, The same 18 true if supports are
flexible.

The strain energy in AB and DE stairs are now computed.
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Ma By .
R
Hy o™ E s
:: ¥
: N
N | =15
N
.
Hy d—\w‘." |8 5
T I
N
by
My R

SECTION ABC

Figure 2.2 Stress resuliants in y-z coordinates {Taleb 1964).
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#1

4
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%

N

ﬁg‘u.l': 2.3, Bireag resoltanis inox, ¥, £ coondinales.
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Let Ugapy be the strain energy in staircase AB.

I{M‘;;_rl cosa — My sina — Ryx)?
U‘*‘”“‘f zf::,nd” 2EL &

{Hmsmu—ﬂrlmﬂﬂiz
d 2.42
+ Glp (2.42)

(2.43)
and

1
ifh P“.,_l}xz cos® @ + Haxsing = Raxcosa

Lzt Upg be the strain energy in staircase DE.
Similarly

Mixam=Mx +

dx

f (Mz3cosa — Myssina — Ryjx)*

_ XDE
Uiam = fz dx + SEL

Ely

{Hn sina — Mys cos a)?

+ 3GIr

0

dx (2.44)

where,

1
Mixpey = Mxz + EH1P{1+3.],::2 cos® o + Hpx sina (2.45)

— Rpxcosa
Total strain energy of the entire staircase:
U=Usp+Upg (2.46)

Equations (2.40) and (2.41) indicate relevant moments and reactions at
the support and may be expressed in terms of those at A which are
taken as redundants. Six equations are written for the least work when
no deflections or rotations at SUpports GCCUr.

als au all
—_— —_— =10, =0 2.47
i H 0 dR4 ﬂ.ﬂz . )
For example,

alr atf alf

=0

— =1

=0, \
aMx i My i Mz
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L

M,
f txdmf.‘rsml:l}!ﬂ-l'+j—[ ENDEJ}I{—EHI + x sina) dx
E'#| Ely
L
Hzlcnsu .
+ T + (Myzsina — Ryx)( f cos o) dx
I. M M
+f( z;&ll‘lﬂ. Z2C080 )ffsinl:ﬂd-’f=ﬂ (2.48)
iy

The above equations are solved for the unknowns Hy, Ra, Ry, My,
My, and Mz).
The solutions are given below for unsymmetrical loading:

Kis
Ry=—= 2.49
A Ks (2.49)
K4
Hy = _K_d- (2.50)
K
Ry = —3K7 (Em + fﬁ,;’) = —3K7(Kig— fRa) (2.51)
1 /201K L1Ks
My = 2( X K +Fﬁ:!)
1
= E{—HIHA + L Ba+ K13) (2.5
1 FKiK FKys
H”'_E(_ KK T Ko +E'“)
1 K+1H
= ——(—jr 3TA L fRa +Km) (2.53)
2 Ka
fEKs _ HiKyp 2L KK\
Mz = =2 _ KyKs -
17 9K, 2L, L
Hi Ko
=-=fH KgR4q— = .
If a+ KpRy ALK Ko/ L, (2.54)
where,
I
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and

Ki=ficos’a+isin‘a, K;=msin®a+icosa

2HE 1 Kz
Ky = (i —i)sinta, Ki=—L 4 ,rz(;:.——:")

3 2 K>
Ks = 4K |L* - 3mWL}, Kg=4K3L® —3mL H);
LiK3y— H K, I 2
Kqm e 00 Kg= ——(H +4L%K
7 K B ELL{ 1 7)
Ll 2
Ky=—L+ !

6 2Ly (L1Kz— H K3 — KgK7y)
L.
Kp= f(BlP[HI]LI + ELSB Pms:)

By L2 H, , 5Ly 3IH;
Ky = : —L3B'P 5H](—+—)
I 24( Py — TP4y) 3T G 4
B L} B\PL; ,
Kiz= 2 I(Fu+3¢ - P — T L+ 138 -”[4+SJLI)
Ly La
— 4+ — = fFKsK
® ( 2 + 4) FE:Kw
B L} |
KEiz= %(F.;H;;] - P+ ELEH Pt4+5])|:LI + L3)

Kig=Ky+HKn
fKn

= Hy K KK
Kis ﬂ'lzleK]3+ oL (L1Kz 4+ Hi K3 + KgK7)

Ny = Rysina+ Hycosu( = Rycosa+ Hysina (2.55)

My) = My cosa+ My sina, Mz) = M;jcosa+ My sina (2.56)

My = Mg (2.5T)
and
Nr=Hpcosa+ Epsing, @2=Rpcosa— Hasing {2.58)
My = Myzcosa+ My sina {2.59)
Mzy = Myycosa + Myzsing (2.60)
Myz = My2 (2.61)
A special case is made for Symmetrical Loading. The equations are
produced when:

a) the flights only are loaded;

b} the landing is loaded;

¢) both flights and landing are loaded.
Pr=PF or Puyn = Poss, P=2Pu4
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The above equations are resolved and the following expressions are

obtained:
Ri=Ry=10
1, (2.62)
Ry=Rp=BiLiPun+ ELIB Piass)
Hl, , , 1,1
= = e | P = - B2
Hy = Hp K. [4B|L| Fii+y + LaB |:-l+5](3f.-] + 4H1)] {2.62a)

1 l
Myi =My = E[(_EHI Hy+ LRy + EL3E!PH~+5F){L1 ER H]}]

KyHy
2K;

1
Mzi=Mzn= EIHA

Myi=Myrs==f

Mote: where flexible supports are included at D, the spring constanis of
Ky, K, and Ky are simulated in the above equations thus modifying
Hp. Mpg etc, The whole equation on the lines suggested in Section 2.4
can be rewritlen and then finally solved for various unknowns.

EXAMPLE 1.2
Analyse @ staircase with the following dimensions and parameters for loading placed
unsymametrically and symmetsically;

Hi = L.E3 m, L= 1.22m, By = 1.22 m, B w2 74dm
Dy = 140 mm, o= 0013, n = 0.507
F=15m, cosa = [LE4E, Eina = L3335, L=34m
Londs: Py om Py om d g kNTmE, Py= Py = 4.8 KN/m?, Py =10
Unsymmetrical Prypn = 96 kKN/m®, Piypn = 4.5 KNfm®

Pigps = 9b kMImE, P o= 1.4 kNI mE
Symmetrical Py Py e Py Py s Py d B KNSm?

Pisz = Pan = Py = 9.6 kN/m?

SOLUTION
Stadrcase under unsymmetrical and symmetrical loads
General conslants nol dependent on loads:

By =0.1535, K;=03667, Kyw 00162, K4=22514
Kyom 45 001535 % 347 - 3 00013 % 3% o 7.0984 - 0,351 m 6.7474
Kg=45%0.1535 » 347 = 3 % 0,013 % 3 » 1.83 = 7.09784 — 021411

= 6.8837
3% (—00162) — 183 % 01535 —0.0486 — 0.2809
k1= 6.7474 = 67474 = 0488
.52 1.52
Ky = I—::!H.BJ+ 43 347 x (~0.0488)] = (183 - 2256512)

= (L4636




54 Structural analysis of staircases: Classical methods

¥ LsE
K e —
LS ey

= 1.5 4+ 0 ABF0GET] 1. 100 + 00250646 4+ (.3359246] = 2.0644
Unsymmstrical placed loads:

1
K= 152122 = 9.6 = 3 + ELIE ® 174 » 9.6)

[3 » 03667 — 183 » (~0.0162) — 6,3837(—0.0488))

= 1,52 = {35,136 + 16.04544) = 777954

1.853
K = [1.12 % ¥ x F)‘”" Txd8 =122 %274 x 0.6

3 i.583
:r 1.33-(5 x E+3 £ T) = 2475110

3 3
Kizm [[I..EI ] (%) ](I.H-—g.ﬁj— 122 dBx % + 122 20w 96

I T
!5(E+T)_ 1.52 = QLIGAT = TI.T958 = 11673

EE 1
Ki=122x Iu.a — 98} + 3" 1. 222274 w06 « 433
- 413595
Kjg=—347.5110 4 183 = 41.3598 = 171.5226

19
TR —1.';13:&% 13x4l.35';5+(].52x 7 53)

x [3(0.3667) + 1.83(~0.0162) + 6.8837(—0.0438) ]
= —62.0392% + 15.673603 = —46.3656

AN T1. K226
M = ?mﬁ J-Er.!33+1 !

= (LB48 = T6.68E8

22514
46 2656 1718226
& =l—:reﬂﬂ-13- R x (533 = —21.631%

Substitsting into Eguations (2.49) o (2.54)
Ry =22459, Hy="TH318] onits kM
R = =3 =0 0488 T7. 7958 — 1.52 = 22.4596) = 63914 kN

My = %{—1 « L&D % 763181 + 3 x 124596 + 41.3598)

= —B5.2928] kNm
1 TaA1EL
My = _i“'ﬂ x 4135598 = e 132 = 224596 + 77,7938

= —lz(l_'-lm.ﬁ-ﬂ — 34038592 + TT.?H!J) = —4563.8 kNm

| 2459
My = -3 ® 152 = THIIR] 4 (=0 4636) ———

3
TR 4 o H}T?.‘:?Eﬂ

= —SE.000756 — 1.7355784 — 23727119 4 29.257859

= 54. 2070 kN m
My = —6563.8 = 0,848 4 54,2070 = (L.533 = —5537.210 kN m
Myp) = 342070 = 0548 + 6563 8 = 0333 = 354471 kN m
My = My = =85.2928 kMm

=183 x
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1
Mz = 65638 — 2 = 1LEY = TEI1E] = 3 % 1.22 x 4.8 x 3

1
+122 %27 % ';.5(3 +3% 1.11}
= 6563.8 — 279.32425 + 26352 + 115.84808 = 6426.676 kN m

Myz = —6563.8 + |.51(11459I5 + 122 = 3= 96

+ % ® 1.83 x .74 = '?.6)

w —0563.8 + 1.52(—22.45%6 4+ 35,136 + 24.06816)
= =H563.8 4 35851731 = AS07 51 kKN m
M2 = Mz3 = 0.848 — Mgz = 0L.533
s | TO2I08 = 0848 + 65079483 x (0533 = 4B 1214 KN m

My = Myp = O848 — Mo = 0533 = —G307. 9483 =« 0,548
= 1702105 = 0,533 = =5608.4624 kNm

M = Mz = 0848 — Mys = 0.533 = 170.2105 = 0,548
+ 65079483 = 0513 = M83.0204 kENm

My = Mgy = 626,676 kN m

Bpm—=224596 4 .22 x48x 34122274 x %6
m =22 4596 4 17.568 + 3200088 = 27.19928 = I7.2 kN

Hp = Hyom 763181 kKN = 76,32 kN

2.6 METHOD OF SPACE INTERSECTIONS OF PLATES

2.6.1 Liebenberg method (May 1960)

This method has been developed using the extensional (membrane or
planar) stiffness produced by the interaction of the stair flights and land-
ings. The landings, columns, walls, beams and floor slabs are “points” or
‘lines’ of intersection and they are treated as support to the ‘secondary
load carrying system” of the bending stresses in the slab elements, The
extensional or membrane forces at the intersection points provide reac-
tions which balance the shear forces in the slab elements.

The analytical procedure is summarised below and in Table 2.2.

a) First the conditions for a proper function of the primary system
must exist. The effective supports are provided o the secondary bending
system and local direct forces due to applied loading when inclined to
the axis of the stair.

b} A provision of imaginary exiernal restrainis at supports thus pre-
venting displacements and rotations.

¢} Calculations of the resultant reactions acting on the imaginary sup-

ports.
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d) Determination of the magnitude of the forces in the primary system
and the actual stresses due to the combined effect of the forces on both
primary and secondary systems.

Notation for the analysis

RBrp =

Rpcp =
Ricp =

Dpep =

REfcn

REpep

REicp
Egc

[

FiC

Eic
Ven

:
VED‘

Table 2.2, Analysis of stairs.

the resultant reaction due to the secondary bending force
system and local direct forces acting at the intersection line
C L} at an angle a with the vertical;

the reaction at C1 due to the bending forces in the flight
acting at right angles to the flight;

the reaction at C I due to the bending forces in the landing
acting at right angles 1o the landing;

the reaction at C D due to the local direct forces in the flight
acting in the plane of the flight;

the resultant extensional force in the flight at © D due to
the reaction R Bep but not including the effect on the local
direct forces in the flight;

the resultant extensional force in the fight at C D due to the
reaction & Bep and including the effect of the local direct
forces in the Might;

the resultant extensional force in the landing at C D,

the extensional force per unil length in the fight at C not
including the local direct force;

the extensional force per unit length in the flight at C in-
cluding the local direct force;

the extensional force per unit length in the landing at C;
the shear force acting along the intersection line CD due
1o the primary force system but not including the effect of
local direct forces;

the shear force acting along the intersection line C D due to
the primary force system including the effect of local direct
forces

Case ) stafrs a5 & triangular arch

The stair is considered as a triongular arch. An applied tine or knife edge bosding is acting at the steps (Figs Z.4(a) 1o
{hik The top or botlom slabs are nestraned against bonzonial movements,

Case §I: cantilever landing slahs with single Mights
A reference i3 made o Figures 2 40a) and {b). A cantilever landing slab with a single flight ngwdly suppomed ag the

lorwer end

RErep= REpep + Drcp

ia)

where, Dpep is the local extenston or membrane force and

oos B

&ina

REpcp = =Rpep

)

REpep = resultanl exicasion of membrane foroe = — Rgeplsind + cos p - cote) {c}




Method of space intersections of plates

Figure 240a), Staircase
with parameters.

Figure 2.4(b). Bending
MOMENES,

- o - b - a2 9
Figure 2.4(c}, Shear forces, i
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Table 2.2 (coal ).
The fosce dsirbution is 1aken as linear, hence
ek e A
Egr —-[ﬂ'atam(l-l'-i)] per unit width {d)

and

, _cosp fie Dipepil + ) .
E;.-_—=|:Rnr.ru.nu(|+ ﬂ}]"'["“_ﬂ.!_"‘ per unit width (e}

where ¢ is the eccentricity of Drepn

} cos i e .

EF”:_[E””_BMB('_E)] per unit width i
, e0s i fie Deenpil — 6" o

Eren = _[Racnﬂs'mq (l - E)il N ( B? ) per il Wit @

Ew:u%[lﬁ-%] per unit widh {hh

ELp RE;_—” [] _ %] por unit width i)

Considering the equilibrium of the flight

i

REfap = REpen = Rﬂfﬂ'm (i
" v . kL3 | X
REpap =REpcp = =P sin® = Rpcp =+ Drcp — Py sinz (k)

{where Fi is the total load on the Right)

3 i oos 3
'!"lqﬂ'=1'r|_'_']'_|= ?[—REFE‘:—E]=—[RB\ED._—E )]
JUHE+ LD e BN (T sina 2
. . 1 cosfl 3 —
Vig = "'{'I:l:,,—[ lfp,—ﬁif—ﬂn:nt"'-i- P sin e -I-ﬂ.r,qytm] {m}
\lII[HI._I_L;] MR
where £" 15 the eccentricity of the resultant of Pr and & is the eccentriclty of the bocal direct force Dipag
RE de
Epy= —iA8 (I——) per unit widih i)
i B
D ™
Epy,==Era+ F;D(] —T} per unit width (ol
RE 3
Erp = ;”(Hf) per uril wikth ®
. I Bflu
Epy = Ern+ ;“(1-—5-) per unit wiglth (q

Considering the squilibrium of the landing:
Vrg = =REpcp
¥en _ 5]

i L
.E'“-=L—_—I[—RE”:9(—+r+£)—Vcn-—L:| per unit width in
L L 2 2
1 [ & L
Epgm % - — —REI.CE(— +:+r)+'|-"¢p-—£] per unit widih (&)
L Ly 2 2
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39

Cane | (coal.)

Figure 24{d). Local dinect
forces.

Drep
Rrco
Figure 2.4{e). Foroe
diagram.
]
RE ey
B —

Figure Z4f). Resultam
exlensional farces.
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Table 2.2 (conL. .

When one edge of the fight (5D) is buill imio a wall an addifional resistance in the form of a shear force Vgp acts along
the edge of the fight. Due 1o this additional support, the slab is trested as if il s lying in three supporis when bendimg
forces are evaluated, The equilibeium of the Might gives:

RE}p 3 = REpep — Ppsinu 4 Vi w
ie,

Vap = REpsg = =REpcp + Prsina oy
ie.

Vip = Ki{=REp,g + Prsina) ix)
amd

~REp, g = (1 = Ks){=REyp + Prsina) o

where K¢ carmot be determined by simple methods.

Figure 240g). Exiensional

Tt

Figare 1.4(h}. Reaction
diistributson.
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———— e a—

W
X

Figuare 1.4 i{a). Cantilever
landing slab with simgle
fkght.

Case 11 *

Figare 2.4 i{b). Extensional
Y
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Table 2.2 (cont.).

Case 1 scissors Lype slaincases
Here v simdlar sixircases are joined te form ‘scissors’ and are supponed on the main landing as shown in Figanes 2.4j(a)
and jit). It becomes 3 statically imermiadiste structure, The systermn requines an sdditional force “H' acting as shavam.

H= R.E:;-ﬁ-” &im E: - REF{-D Sil'l'El

{a)

= REfqgycos @ coscg = (REp- pcos @) cosay)
= Kpgy sinp (b}
(RE ;o sinay — [REf-peos B -sinag ) = Rpgy cosp ()

ar
H = REFgy (sin B = cos 8 oos ay) ~ REFqpisin 8y 4 cos 8 cosy) = Ragy cosf

If bending of the landing dominates, the displacement of the resuliamt X 45 and X ;p will depend on the edges of the
landings in the direction coinciding with the planes of the fights.
If the landings and flights are egual
K

Xig=Xup= 3 {d)

If the upper landing has negligible stiffness & compared with the lower banding
Kig ml, Xyp=K (e}

Case IV, membrane type staircass

The extensional or membrane forces of a eniformly distnibsted lopd can be calculaled in vanious planes with &) and
By values small (Figs 2d4kaa) o kid)). oy and ey shoukd be the oniform load per unit horizontal area of the stairs. The
following computational values can be oblained in & peneralissd mannes:

m;=m|=[*|W|L|E+l1wlﬂf_(ﬂ-I-i—?)]%:m {a)
a8
REFE;:=—R£F£H=—L (B)
sir o
. mbB  aylyFsna
RE, ==R/E = ——
FCD FaR =~ — 3 {e)
The magmitede of the exiensional forces &re as follows:
RE B+ C)
Era= ;‘”"[l ST ] fd)
™ B - .
SN P Lk width
s'mu[ 7 ] per aml e}
a;,d=r;ﬂ-m,1.“;—“ per uslt width if)
REpcn 31.&-1-1':!!]
Epp = I+
F a [ &
m B+ O L
== l 4 ——— t width
sirm[ B ] per inlt = e
Ejy = Epg — L ? per unit width {h)
, slin T .
Erc= Ef'.-l and EFI'.-EEF"--"—N'L]T IHLI.HL‘WH..IJ {I}
Epp=Epp ad Epp = Epp+uwili—=— per unit widih (i

F)
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monement.

Figure 2.4j{a). Floor slab
restrained aguinst

horizonial

Flgure 24 ji(b). Boundary

farces,
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Caase IV

Figure 2.4 kia). Membrane

linoes, ﬁmﬁm

mo § iHHillHu rl;HHIHH;lf

m{'-i[ﬁf"'}}l[h ,,4]1

@) | T s
of extensional forces

Figuse 24 kib). Ponces
acting in venicol plane

/—\ i A4 m I:b"' I:':'
+
|

forces acling in vertical
pliane.

b 12 mB (B +e)
Hogging
Figure 2.4 kid). Bending |

Lms acting in vertical |'C' o' G H'l
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Figure 2.41(n). A staircase
with suppart al endd

landing.
m IR+ C) —_—
EL{‘——E[]—T] per umil width ik}
m 3B+ C) .
Eip=——|1+ —— widih 1
Lo mu[+ B ] per unit b
Eig==Eip., Epy==Epc perandt width {mj
Erg=—Efrn, Erp=-—-Epc per unit width {n)
E;G=£;a-u1:_.$ per unit widh {o)
‘ sl —_—
.EFH-=EFH-UJ|L]T per unit width g
Epy m—Epn, Epg = —Epy per unit width {qp
E',.;=E”+u.:..¥ per unit width {x)
stna
Fp;:Er;+W]L]T

The unbalanced resullants of the primary extensional forces along C M are in this case 16 4 verlical plane.



66 Srructural analvsis of staircases: Classical methods

Tabde L2 (comt. ).
Case V) & saircase with support 2l mid landing

Case ¥ is similar to Case 1V except the end of the intermedime landing is restrained hofzontally and veddically as
shown in Figure 240(a).

Considering the equilibrium of the intermediate landing:

Rocpcosfm —REpep - cos By sinay + REpgy - cos 8 sinasy (a}
RE1on + Rpcpsinf = —RE rn

where,
kErgy = RLpgy cos By sinag
EEirp = RLpenoos &) sing
Vig = Vo + Vop = REpgy sin®y — REpgp 5iny
RELcr = XNgn — BEpcpXep = Vg -a

REpsrocoaBosing: - Xgy + BErcpcos &) singy - Xcp

iR L

— == Xpajj = Ll

3 + . G i:'11:11. - (1.1
E+ Xep = lam &

7 FET A= e et

Thee internal extensional {orces can consequendly be deicrmined.

2.6.2 Siev's method (June 1962, October [983)

Plate analysis of multi-flight staircases

The space interaction of plates forms the basic theory of analysing stair-
cases while assuming they are statically deteminate. The plates are divid-
ed into various horizontal shapes looking like trusses placed horizontally.
The analysis is similar to that used in hipped plates, The line of the in-
tersection between the flights and the landing is considered as a support
and the load acting on it is resolved into forces in planes of the plates.
Figures 2.5 and 2.8 show the various effects under symmetrical and
antisymmetrical loadings. This method is very similar to Liebenberg's.
Here torsional moments are then calculated as those moments causing
compatibility in deformation.

Notation for the analvsis

cross-sectional area of flight;
dimensions of stairs;

torsional rigidity;

overall depth of slab;

Young's modulus of elasticity;
siresses;

modulus of elasticity in shear;
moments of inertia;

moment of inertia of beam 3-10;
moment;

foad at & point;

C, Ly, L

TES~O-moNme
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&) — )]
13- U =upper flight " 4
= *
. Ly = lower flight 4
=
5
¥
5
¥
PN
Motation of axis and forces
€ d)
Axonometric view of equilibrium of landing
) 7 & 5 D 1
=~ AT F 133
10 3 (- Z’TCT B
"o x| P '
1 " iy ‘JCI & ’
t L I Equilibrinm of beam in vertical plane
Equilibriuem of landing in borizontal plane

Figure 2.5, Equilibrium of space truss under symmetric load (Siev A. June 1962)
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)
¥
X
&
¥
%
¥
'!I
Notation of axis and forces
MNotation of axis and forces
€} 1]
I 7 3
{
: 10 9% 3
Y |, X e
B G B
I ] |
&)
f
Z} If 12 Fi
I BI ICI B' I
Equilibrium of beam 3-10

Figure 16 Eqguilibrivm of space trass couple {3iev A. June 1961
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R = force (resultant);

R = force resisted by primary stresses;

R" = force resisted by secondary stresses;

w = displacement normal to plate surface;

w = lpad Wy, Wp = live load and dead load,
respectively;

X VY Z = forces in x, y, r directions, respectively;

XY Z = forces in X, ¥, I directions, respectively;

Greek

o = angle of slope of Right;

] = deflection of a point, vertical;

£ = elongation of respective fibre; and

T = torsional shear stresses at the flights.

Subscripts

u, ! = upper flight, lower flight, respectively;

£, a = symmetne and anbisymmetric, respectively;

X, ¥, I

X, vV, I = indicate direction of moment, stress and so forth;

1.2, 3 et = indicate point of moment, stress and so forth,

Basic analysis

Table 2.3 summarises the basic equations. The elememts 1, 3, 5; 2, 4, 6;
7.9, 11; 8, 10, 12 and 3, 4, 9, 10 each represent a single part with pin
joints and are in vertical planes. Another element: a diagonal 1-4 dashed
line is added to offer resistance to any horizontal forces. The unknown
forces are represented by ¥. The forces X and £ acting on the landing
are the horizontal and vertical components of X such that

X=xcosee and Z =Xxsinu
R" (resistance to an additional load) = R — K’ {2.63)
where R is force (arbitrary) resisted by arbitrary load.

Maoment in slab: moment

1. max. cantilever moment = 9.763 kN m

2. min, cantilever moment = 4832 kN m

3. max. negative moment at floor levels (lines 1-2 and 11-12})
4. negative moments at floor levels for full load

= 1224 4 E;—j = =7. 3585 kKNm

5. max. positive moment = 5.02 kN'm

Slab Reaction 3, 4 or 9, 10
BR =3375kN
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Table 2.3. Basic analysis — Summary of equaticons.

Couple My = P28+ C) [a)
Example X3 = I:}L:-—L-—Tu b
) 45 sina’ 48 sina
R(C 4 1B
Km.=l'm.r=zmq (d)
E=F+ K" where, " R, R=FK i)
¥=-—2_  x_Tcsa Z=Ysina if)
28sina
3 R B+C
Fh__ﬁ"nmu_uﬁu('ﬂ B ) e
R . B+C
My = maximum mid-span primary negative bending moment for beam 3-10
_ _pmB+C
=—RR —
7 , _ BR'L(B +C) .
WM =i~ Y = S p D 2
. RBNB+C) BMy ,
lﬁ—h—Th—{C+t}.Tﬂ}-mﬂC+u} )
W = T (= ) + () — ) 4w — wf — uf = Eg. i cosa
- — | &
R u—l-l—.m,u[lﬂ( = ]] (k)
B+ C) BC(B +C)

—_—— +
GLEDjBoosa  4Elpcosa
"T= |
7 4 PLuna BC L
GC = EBDy = 2Elcosta

MyH1

ﬂ—ws‘-w;;—ﬂ'--lzmmﬂ {mj
under asymmetrical loading
My = B(B + CIR, (m)
M, B(B+0C)
—Xs
N o~ 7 mma " L
. GCB(B+C)
My, = mﬂ: ip)
R,.J oo 1

~ Ehy e @
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!

k)

‘ oy

KXo

Willict diagram of displacements due io strains
in plates,

Figure 2.7, Stresses and displacements resulting from symmetrical loading due 10 strain in plates (Siev A. June 1962).
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#)

Displacement due 1o bending on beam 3-10

h} EF

IERRRININERR) Load on beam 3-10
10 9 4 %I,""_f}
(143 By Reaction from flights on beam 3-10
w(1-38LL)
B e '
ﬂﬂ |ﬁ! 0 Reesaltant of forces on beam
JRIB_IE

B
-EnEe0 Bending momeat fir beam (as if statically determinate)

_.cdﬂﬂ;]ﬂmm:tn__

]

| 5-8]-5(34-& Deflection of beam

Losding and deflection of beam 3-10. Note: By+ C= Ly

€
i1

X

Positive moment distribution on beam due 1o torsional restraimt

Willict dingram

Figuse 2.8, Displacement resulting from symmetrical loading due 1o bending of bearn 3-10 (Slev A, June 1962)
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EXAMPLE 2.3

Using the space interaction of plaies for a mult-Aight staircase and the following
paramcters, cabeulate moments, reactions and relevant stresses for & reinforced concrete
slaincase under bolh symmetrical and asymmetrical loads:

Lim2im Hi=H=1Em
L=34l4m
B=11m, C=03M8
Dy = 114 mm for flights
Dy me 203 s foe beam
Wd = dead load on horizonts] projection = 4.8 kN/m?
WL = imposed load = 4.8 kN/m*
G =04E
Asgume the ends of the Sights are completely fixed.
SOLUTION
A multi-flight siadrcase in concoele
Iy =151.7 % 10° mm®, 1, = 17,230 x 10° mm* Grade 30 concrete
C= %’iﬁ -@i)-.ﬁuxlu‘m‘

Iy = 426.0 x 10% mm*
Beam 3-10 cross section 610 = 203

Equation (k) Table 2.3 for symmetrical loads gives
R" = D.006363R" kN/m
The ratio between the secondary and the entire resistance:
R”
R'+ R"
M = secondary negative moments at the floor = 0.0063R; = [y =
0.0063 x 0,192 » 2.9 = 0.035 kN/m
Ry = 1(0.192 kN/m is acting on the primary system.
Table 2.3 Equations (g) and (h) is invoked replacing R’ by R,
fro = — fig = 2151 kN/m?
fiz = — foio = 1241 kN/m?

With these stresses there will be an increase in reinforcement ration in
the tension zone. In order that the torsional moment can be computed,
w3 = wy, the relative displacements must be known.

E(uwn — wy) = 50.84 kN/m
Gluy — wy ) = 0.486M, ; kNm
E(wy — wy) = —0.000641 kN/m

= 0.0063
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&)

Williot disgram

Sy v ¢

Strains in the upper flight
{comvex deformation)

{j|
7

|

Deformation of bearm

Figuse 29 Stresses and displacemends reselting from sntisymmetrical loading.
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= :l:zul mam

Width of the beam 3.10

Figure 2.10. Typical substituting into Equation (j) Table 2.3
cross-sectian through
landing with variable depth. M, = 2.4521 kNm, m, = 2.096 kNm

The deflection of the beam 3-10 contributes to the torque.

My 5
BD2

f
30m~
= 25 — 395 kN/m?
Hﬂf

If Grade 30 i.e. 30 MN/m? or 30 x 107 kN/m® concrete is used { fiy >
f!) stresses can be absorbed by the concrete easily. In this case no spe-
cial torsional reinforcement is needed. This is the reason why torsional
stresses are ignored in the Design Office Practice. This rigidity of the
beamn 3-10 is increased by using sufficient quantities of steel in the com-
pressive zones, thus bringing about a reduction in the tensile stresses.
Using Equation (g) Table 2.3

Mz =232kNm
The total primary moment = 25.65 kNm is adopted.

A symmetrical load
Using Equation (g} B; = 0.0052R,

The full load Ra can therefore be assumed to produce primary stresses
only {(Eq. (e} Table 2.3).

Calculation of maximum stresses
(i) wg+1/2w; = 4.8+2.4 = 7.2 kN/m" cntire structure symmetrically
loaded
{11} one half of the structure with <1,/ 2w = 2.4 kN /m?
and the other half with —1/2w;, = —2.4 kN/m?

3
Torsional shear siresses = 1t = = 105 kN/m* or
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Appropriate superposition gives the maximum stresses at each point.
The previous values are multiplied by the load ratio 7.2/9.6 = 0.75

R: =0.145 kN/m, R, £0.05 kN/m

— 2
Fgo ; = 1614 kN/m

Fzy p = 9310 kN/m?

Using Equation (o) Table 2.3

f33, =420 KN/m® = — 5, under full load
[F1mae = 731,421 = —510 kN/m?

This value is 9% higher than stresses under full load on the entire stir-
case and is generally regarded as insignificant for practical purposes.

2.7 HELICAL STAIRS

2.7.1 Introduction

Recently, curved staircases have been constructed, supported only at the
top and bottom. Although they are circular in plan projections, in ele-
vation their description is helicoidal. Various analyses are available to
solve such a complicated problem. From each analysis, torsional mo-
ments, bending moments, shear forces and axial thrusts are resulied.
The geometry of each helical staircase affects the application of load
and hence the results, This subject has been throughly reviewed in depth
by various reseachers. In this text, only significant analyses are given
which might assist researchers and practising engineers.

2.7.2 Morgan's method (March 1960)

Introduction to the method

This is one of the first methods produced for the helical stairs and is
based on freely supported flights. A uniform load is assumed on a divided
structure. Various moments including torsional moments are computed
using a carefully cosidered geometry. The analysis also gives shears and

axial thrusts,

Natartion for the analysis

d], @2 = coefficients for redundant moment and force at midspan,
respectively;

i3 = coefficient for vertical moment at fixed end;

B = width of the stair section;

E, G = maoduli of elasticity of concrete in tension and com-
pression and in shear, respectively;

H horizontal redundant force at midspan;

3
ol

total depth of stair section;
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I kI = second moments of area of effective section of stair
about horizontal axis = IIEBD} and about axis nor-

mal to slope = 172Dy B2, respectively;

J = polar second moment of area of effective section of
stair = K3BD} (for values of B greater than D);

K = torsional constant;

= 1/3-336D7/16B[1 — (D;/B)*/12];

My =M, = redundant moment acting in a tangential plane at mid-
span;

Myp, My = lzlljteral moment (about axis normal to slope of stair) and
vertical moment {about horizontal axis), respectively;

Pay = thrust normal to tangent;

R:. R, = internal and external radi of the stair, respectively;

Ry = radius of centre-line of load:

k2 = radius of centre-line of steps = 1/2(R, + K;):

Vags Ve = shearing force across section of stairs and radial hori-
zontal shearing force, respectively;

Ty = torsional moment;

w = total loading per unit projected length of centre-line of
loads;

Greek

B = total area subtended by helix as seen in plan;

2] = angle of sublended in plan measured from mid-point
of stair;

& = slope made by tangent to helix centre-line with respect

to horizontal plane.

Basic analysis for a freely supported helical stair

This analysis is based on a freely supported flight, Figure 2,11 shows
a fypical helical staircase with various moments and reactions labelled
on it. At the mid-point the angle ® is positive when measured in a
clockwise direction and is negative in an anti-clockwise direction. The
strain energy concept again is applied. The loading is assumed to be
symmetrical and hence the structure of the stair is divided at the cenire.

The angle ¢ is constant.

tand = Hi/Rap

where, H) = effective height of the stair; f = effective angle through
which it turns; y = cut off angle is taken to be 30 deg.

At any point © in the flight, Morgan developed the following equation:
Vertical moment;

5in &
B

B
My = Myy = wR) Ryt 4 wRH(1 4 cosa) — HHy3'

3 (2.64)

Lateral moment:

i=!
My, = |:wR| Ri(cosa — @) — HHI-'L‘-’M; - “-:'Rjz sin l:t:| sin ¢

B (2.65)

= H Ry sin&cos é
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Figure 2,11, Helical stairs
iMorgan's method).

=30

T'w centroid of loads
Torsion:
T, = [leRﬂcmu —@) - Hﬂ.a‘““;ﬂ — wR? s.im:] oty o

+ H Rasin © sind

Thrust normal to the tangent:
Pos = —Hsin®cos d — wR & sind (2.67)
Shearing force across the waist of the stairs:
Vie = wR S cosd — H sin @ sind (2.68)
Radial horizontal shearing force:
Vo = Hcos® (2.69)
The vertical reactions at the simple support are:
wRyB /2 (2.70a)
¥ = 2R sinf/28 {2.700)
x = Rasin(f/2 — 907) (2.70c)
Then
HH =wX+x) and My, = HR;siny {2.71)
where,

a=8-A, F=0+p2
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EXAMPLE 2.4

Calculate varkous parameters for o freely sopported helical siair using the following
e

= 300F

&y = internal radios = (0.19% m, widih = 1.22 m

Bi=154m Hj=31lm

2135 = 0915

By T I Belin m ————
t for the axis of the belix = = er—rorey *

1
= = 1603
3 =11

SOLUTION F
Rezly supponied helical stair

reactions al the end of Aight = 61.38 kN
H o= 6445 kN, Mygo at O =476 kNm

Substituting these valwes in Equations (1.64) 1o (2.69) various results are tabulaved in
Table 2.4,

Baric analysis af o nair Tight with fleed ends

Again Morgan (March 19607 sdopted the Siraln Energy concept in derlving various
expressions for a belical staircase flight with the far ends fixed. The origin is kept at
€ as shown in Figare 2,12, Bending momems. (o the right of thds point anse assumed to
be positive when acting in an anti-clockwise direction when viewed along their axes
iowands poind &, The reverse of this is treated as negative, If M7, is the bending moment
mcting in the langential plans &t C, the values of M,y and Myy and Ty are compubed
B

Myy = M cos @ + HR;Bsin Buné — wRI(1 - cos 8) am |
Myr = (M) sin® - H RyBcos & tan § - u.l.ﬂ',tsinEi = w iy B3 sin
- HR; sin©cos & 279
Ty = (M, sin® — N RS cos S tand + wlf sin 8 = wil) Ry 8) cos 4
+ H Kz sinB sin g {2.74)
w_,
W AMy My WMy My ST, T oo Los
-g{(m's—ﬁﬁ's—h*m'a)l =
i1l
T =1
Table 2.4, Summary of resulis,
Parameters Degrees ()
=15  =1HF -&F -fF =3 F My &l o 120 150
My (Nm) 0 —80 7230 —1100 3560 7785 $00 1100 —7230 —8000 3580
My (EMN m) 155.68 280 347 EIN] 187 i —1EL00 —311 347 280 —155.58
T (kN m) =55.60 -3336 10100 3336 303 O =JT00 =300 —1L00 333 5560
Flag (kN x40 66T VL3I0 5120 33s O =333 =512 -T2 —66,72 =514
Voo (K] —44. 50 —2900 1100 —667 0321 0 0.23 687 1100 XHod 4450
Vo (KN) 5780 -3336 0O 33346 3580 &30 3136 560 O =333 -5V O
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My | | My Mo

Figore 2.12. A helical
siaircase with fised ends.

(MMog Mis | WMoy May 8Ty Ty
(!-H' £, T ER T o)™

ny
- Jf (276)
o
The other valpes are:
Py = thnst = —H sinBcos § = wi) B sind 277
Vi == shear farce acrods the wiikl of the stars
= wiil) B cosd = H sin S sin § (2.78)
Vi = radial horizoatsl shearing force = H cos & (1.7%)

From Equations (2.75) and {2.76)

F —
%[nm llsinIBI;H:,+ whi) - whisin® - KHR; m¢:|
1

+ S[miM], + wR]) + nwR, Rs + T H Ry tan ]
S
+HR15i.r|.¢-:':ls-¢M(] —-—I}nﬂ (2.8

e

Ely 2 3 4

+ S[K (M, 4 wRY] + wRi R2(8° sin © + 2n)

i R @ @lsn2e _) ( GJ]

4 x[miM] + wRY) + muwly Ra + T H R 1an ]

_ GJ

+ KHR sin-tlms#(l - —)
El

I
Gl mtd:) =0
Ely

! - H R 8 efdne
G_[nwﬂf—r[ﬂ-f;+wﬂf:l+ ‘nmq;(___;__g)]

+mHn1m’¢(Lm¢+ (281}

where,

Eens! B ~ sin 28 e 8  sinl8

4 g 2 4 7 (28I
) 5 G,
ne B —-ginE, Sf=zot8 4+ —sint 8

K=
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—

EXAMPLE 1.5
Determine the values of My, Mep, Myr, Tr, Vip, H and Py for © varying from O fo
£120 deg, using the following data:

& = the angle of inclirstion of the belical stairs 1o the horzontal = 25 deg:

B = 240 deg

1 = LI m;

o =  thickness including fread and riser = 152 mm;

Ry = 1.603;

By = L54m

&y = rudios of the inside of the stairs = L9135 m;

H =H = effective height 3.2 m;

L = umiform distnibted load = imposed load + dead load = 2,873 kM m®+
3.59 kN/m" = 6.463 kNrm?;

GJE = 0429

SOLUTION

Analysis of a helical stairs with far ends fixed

Ry /Ry = 105

B0 = 121 introducing data and these values
.ll':_ m =2 0 kN m
H =191 kN

The above equations are solved (& varying 0 o £1230°) and the following table sum-
marises the results.

‘The overall impression from these examples is thal boundary conditicns play an
imporiant role in the assesement of varkos moments and reactions:

Liminng criteria for the design wlifmare rorsional momens

Elastic theory, using gross concrete area of structures, often leads to uneconomical
design. Simirs in particalar, when suhjected to significant torslonal moment, become
uneconomical unless the design ultimate torsions]l moment is limited to 3 maximom
walue. It should be eqoal w0033 . 2/ Nmm = T, where x and ¥ are, respeciively,
the shorter and longer dimensions and f: is the cylindrical compressive strength of
concrete, Genecally fo m 0,87 fry = cubic strength of concrete. For a fixed coded stair
fights, while keeping the analysis given in Sectlon 2.3 the valoe of T, is constan.
Substituting Ty from Equation (2.74) and expressing M in terms of M}, and (Typla =
¥1 = T the horizomal thrast M can be wrinen as

H =y + %M (1.83)
Table X5 Susmmary of nesulis,
Parameters Depress (8]

=10 =5 o Hr o Hr LIy Qe 1200

My (KN m) —630 0 1.50 -1.5 =230 0 1.50 =1.50 =550
Mgy (KN m) 112 30.20 2112 14.40 i} —1630 27 =3z =272
Ty (kN m) -3 -32X =M 0. 0 —0.30 =02 0 0
Py (kM) 26 25,30 19.30 11.00 i} —ik§ —19.30 -=2530 2560
Vayr (kN) —170d 030 -45) -2I5 i 215 4,50 =530 1700
¥ (KN} =875  B0D 8.50 12.50 178D 12.5 £.90 —2125 —B.90

Mote: These results can now be compared with Example 1.5 for the same input data up to 128, The results show that a
freely supported stalr can produce results differest from the fixed endad ane. Where supports ane seri-rigid, the average
results of the two are acceptable.
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where,

3 %= To = cos ${w k] siny; = wRy Ray)) 280
L= Rl 4 v cotyy ) sindy simyy )

B kg = cot

R:[l + 'r']m?|}

where, vy = a pamticular value of € for Ty maximum; y> = a particalar value of
for My = 0 poand of inflection; w = design ullimasle losd per unil projecied lengih all
the cemre line of the load.

Tahle 2.5 gives other paramelers given by Ramgan et al. (1978) and Rajagopalan
(1573}

nr

EXAMPLE 26
Assurning the Tollowing data. determine M), and H and other parameters for the data
given in Example 2.5

Ry=1603m, R;=154m R/ E=105
=0 MNm® or Mpa, T, =631 kNm
¥, =236 radtans = 0388, ¢ =125, w=6.863 KN/m’

SOLUTION
Tersional limstation for design ullimate bosd

6,31 — 09063 1(6. 453 » 1.1236 = 0.68 — 6.463 x 1603 = 1,524 = 2.30)
= 15241 + 2.39 = L.0T)0.4226 = (.68

]

=23i13
N 11445
P ISM £ 239 % 1.0T)
Equiations for helical stairs based on Rajmpopalan mechod

Al B = 95 the moment Ay is assumed zero, Substinsting for My at O from Equa-
tion (2.83), Eguation (2.72) gives

= (L3956

wRE(] = cos yq) = &y Byys tan  sin vy )
cos ¥y = haRyya tan g sin vy

To fAnd vy &nd ¥Ty ls maximem by ) and sobstituting into Bguation {2.74), the
fodlowing expression is developed,

v,

{a

M cosy, 4 HoRytandyy 4+ why Bz =10 ik}
when My =k when & = v, Equation (2.72) gives

0 = M 008 ya + Mo Ryys tan $siny; — w.ﬂ‘,l[l — ik Yal

fr

v = My oosy + HoRyyy an siny, )
Ri{1 = cosyy)

For optimum value of s, pusfyy v = 0 the following expression is developed

M, = HyRytan$[] + yycot il — cosyy) + yasinyy] =0 idy

substituting for Ay from Equation (283), Equation (d) can be wrilten as

r— i)

K+
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where
|
¥ = ﬁ-;Lm¢[]+'|--::|:|l1‘r2-|'l—|:n:.'|.-2}+'|.lzl.in'_|r=] 0}

For valaes of &y = 23.13 and 33 = 0.3956 Eguations (a) (Table 2.5} and (2) give

(64630160312 (1 — cos vy — 23.13 x | 524y, x 046631 sin )]

M =
' cos s = (L3956 w0 1.524yy = 0.46631 sinpy

=10}

ar

M - [26.60740] = cos g — 16,4375y sinyg)]
w o6y = D281 1y 5in y

Again from Eguafion {e)
i LY
T ka4 ¥

2313
T 03956 4 DLI0GITT 4 vy ool b1 = 005y 4 g S ]

The interaction between these two values of M_ from Equations () and (¢) gives
yp=2313 and M) =-T.841 kNm

Hence Mg = 23.03(—7.84] = (L3956) = 26.23 kN,
Eguations (2.72) to (2.79) ane invoked for parameders such as Mep, Mop. Ty, Fop.
Vep and Vigp. Similar cabtulations are made as grven i Example 2.5

2.7.3 Cohen’s method (May [955)

Introduction

Here a comprehensive package is given for the analysis of determinate
and indeterminate conditions of helical staircses. The distributed load
wi{s) can be non-uniform, with a non-uniform bending moment M(s)
per onit length of the curve, General equations of equilibrium are re-
lated to three loaded axes. An element of an arc is considered for a
twisted curve. For a statically indeterminate staircase, the equations of
equilibriem are not sufficient. In addition, equations of deformation and
angular rotation at any point needed to be considered. The determinate
beam staircase involves cantilevers with supported beams and beams
with three supports. The indeterminate considers cases where both ends
are fixed or one end is fixed and the other is pinned.

Notation for the analvsis

moments;
twisting moment;

a = radius;

r = Constant;

0 = seclions:

H = height;

K = sind/fa;

L, m, new. = direction cosine;

T N, B = principal lines;

Ion, b = normals in vanous directions;
M

M,
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F = forces;

5 = length;

v = projections;
Wiz = load unit/length;
W = load;

Crreek

a, @, &, . ¢ = parameters defined.

Greneral differential equations of equilibrium (determinate)
Table 2.6 shows a twisted curve related to the system of coordinates
Ox, v, z

x=x(s), y=yls) z=1zl5) (2.83)

Table 2.7 gives a summary of equations of equilibrium for a freely
supported helical staircase. These are then adopted by including the
effects of uniform and non-uniform loadings and distributions of their
respective moments. The final expression are derived for moments, and
other reactions.

EXAMPLE 17
Analyse a fmeely suppocted hefical staincate, with dmber treads fixed 10 a redaforced
concreie helical beam. Use the following data:

a=085, o =058m @m=15%m & =240° H=313m

timsber treads: 105 m long and 0U05 m thick
E. C. beam = 0338 m wide and 0.213 m deep

SOLUTION

A helical staircase with tHimber resds and B, C. lbalical beams.
Evalizalicn of parameters:

O = I".|'|.I'Ell = {1z 379 fdn =080, ocxd=cla=0%82

& = 4720

sind = 0,735, cosd = 0678, 1=nd = 1.085
K = gind/a = 0.B4
5 = helin length = 8 /K =5 m

= ¥
.Jt'!‘=ﬂ:|'|u~|:|h:||:|E|:-a':-l|1|J:m|:4;.|!=E[dg II:rl:|=l.!21'.rl:|
L n.]!—nit

Weights:

weight of the beam = B.52 kN, w total = 26.027 kN

weight of the treads = 17.507 kN

w/metre length = 26.027/5.0 = 5,205 kKN/m

my = 17.507/5 00(1.128 — 0.875) = 0LESG

O = —B.77804%6, C=—S5.135877% Cy= —0.187853

Cy= —BMETIBY, Oy = —0.6259467, Cy = —8.2269908

from 0 o angles all valucs for 77, Ta. Tay My, M, and My are caboulated, The values

from 2ma,/3 to Smayd will have the same values as those given by &' but with opposite
signs. These values are summarised for vanous angles af &
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Takle 2.6. Final resalis.

0 i 6 a3 mia S Imafd  Smayl  ma Troima) 4maf3

Ty (kN} =1310 —=11.544 —Ba74 —46T0 0 467 BAT4 11.544 1310
T (KN} T 0 1358 5810 BTG 5810 1358 L] =335
To (ki} —54631  —2a24 0845 —ilie6 0 onle DB45 2624 5630
M, (kM m) 1150 8510 4 504 1.713 i —1.M3 —4604 -850 -11.50
My (N mj 0 =562 *6%max —2006 0 =1006 5613 6623 0

- 5,613
My (kM m) 12.50 1E.E1 at L2158 11.75 i =10.750 —15882 (RERI —1250

+156.882

Mo *19.77] max a ma/4,
The maximum or minimum valees by differentiation with respect 1o &, The points of intersection are found from the
secaond differentials of Egquations (1),

Table 2.7, Summary of equatons for detsrminare helical stairs.

4F
w radine of curvalure s —— {
i us of ¢ L aen )
t-=ndiuu:|{lursinr:-£ (b}
dipy

Drrection cosine:
Three principal lines:
For T: ay. py and v,
N Mg my oand my (<}
B kg, g and vy
lgnoring small angles:
oo dey o Cod Ay o ] sin dey = §; sin dy = gy
cos 0y _ coséy | sinddy _ db sindey _ dby
2 2 2 2 2 2

Now the following geometry is established:

= g %
=% MEE NEE
dix 4 &l

{ch
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gy b4 & m o odh m d A m
dr p s pt oAy @ s ' dr %
Wi m
s 1, @
dh _m hoodm o A o N
& p o oy p T ds P
. .. dr -
o= comligy, £y =1, 1, = eodlly,n) = - i = coafip, By = 0
Targenilsl Marmal Binormsl
- ds o . P di
-'T|J=':'m|:ﬂl:l|.l:|=_r|n=T. iy = C0s{i , R) = 1. Fllb=m(ﬂﬂlub}=—;
= ~ 'i'l: N ~
by w= coslbyy, 1) e fyy =0, iy = cos(by, f) = —np = o byp = coslbgy, b = 1 fel

Al paint A an equally or unequally distributed load 18 glven by the resoltant force P and the corresponding resoliant
moement by M which can be replaced by their projections with subscriptions, 1, 2 and 3. Angelar rotations in the respective
directons ane represented by & with specific subseripte. Ty, T, and Tp are (lensile o compeeisive) shearing forces (T, Tp)
and twisting moment M; and bending moments M, and M. The sign conventions sre given in Figures (a) o (o) and e
directions of moments are represented by double armows. Por a nod-utiform load disriboton (1) per oot length of the

By (hi-moremal)

T (tengent)

Figure [a). Gegmetry of (mormal
the curve U !

Figure (b). A twisied
curved stair

Figure {c). Moment,
internal forces,
dizplacements and

[CHALRDNS,
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Table 2.7 (coat).
sLairs

S

Wis) = und + wnit + wpb (f1
and the non-uniform moment distsbution of momenl M)
Fls) m gl MR + mph (gl

The following equilibrium equations have been derived by Cohen (14) with their application procedures:
A reference is made o Figures (2) to (g
Equation of a belix about xvz( Figure (e)
Hyd €

r=acmE®, y=a5n®, =¢8, Cs — =gl — (k)
K | a

ds m f(de? + dy? + d2?) )

Figare (d). Sign
conventhon.

Figure (). Cylindrical
surface.

Figure (f). Plan of
sladrcase.
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S —

Figure (g).
Figuee (k).
= :,-'1:I+].H]-_ vl H-E
o a2 T osind K

Where & is an independent variable, the coordingie axes and direction cosines are writken a5

# =aos(Kr), y=asun(Ke), £=cK2
a=—stndsin{Ks), P =sindooa(Ks), w¥=cosd
| = —cm{Kx), my=-—siniKs), ny =0

W o= cmsin(Kn, gy =—osponsiKs), v =sing

p=ajsint & and 5 a constant, T, = 2a/sn” & and i3 a constant

Cihen took the unifemly distribuled losd and moment as Flpuare (k).
Changing ¥ to & the new T, and M| are obiained

T = Cy 4 Cy5in 8 + O3 cos B + awcal $B

I .
To=—IC & — Cysind
5||1¢| 7 CoG 3 s5inEl]

il
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Tahle 1.7 (cont. ).

—— e L

Th = — oot pi{Cyoo8 8 = Oy 005 B} 4 tan $C) + auwd
My Oy o Oy 508+ Cg 008 8 + acol bl o058 — L_jll'nﬂ:l'l'ﬂ-'ﬂlﬂ

1
My = m[l‘-‘: cos 8 — Cp $in 8] + a cot | Czicos © — B 5in9) ~ Cyisin® + 8 oos &) + wa® + ma)

My = —cot (T siu'E!+{'ﬁcmEl:l+lmliC4.+ﬂmt1¢E£—sz 8 <= 3 5in B

o . [1] 3
—mtﬂ;umﬂ+ﬂ}m9}—mc| — WNF ml.#B ﬂ}

where, O 1o Oy are constanis for 3 determinale siadr, there can be no moment about the axes Ox and Oy Coben derived
the forces snd mwmends &l FUppoTs:

Ap = ¥, 1III';|-| ¥ and M,

il
A= Vi ¥, Vi and M (m
The division of the venical load between A and A depends on the relative stiffness of the wpper and lower supports. The

fimnl waloes are given below:
i [s'mE") wa (l+:m'El" FinE')

VeV see— | m— | o —— —
* ok d (=4 cos d 2 &'
Ve e l=—cos® wa fl—-cos@ ijII'E')
F-F T cos ¢ = CO5 = P
HME
1_.-:=1l|-r= - ¥
= Ising
. ma ( ms&') wa’ (!—mﬂE' si.nE"')
My=M,= === -
* opsd = o -4 =
At the origin of the helin Ag, the direction cosines are writien as:
ay =10k h==1; k=0
By=sing; my=0 p =cosd (o)
yrmcosd; mgw( ¥ywsund
when & =,
To = sin gV, 4 ea gV, =)+ 5y
C
ﬂ=_rl = ——
T sing

Tho = — 008 §Vy +singV; = —col Ty + 1an ¢y
My, =compll; = Cy + Cg
Mas =0 = Cxg == a ool §C3 4 mt-l-m

(]

a d
Ay, = singM,; = — col Ty + tan - —ily - ——C
o = Sin SM,; dCy 2Ly ﬂnz*L mu1¢l
By substinuting in Equation {u) the values of ¥y, ¥, ¥, M, the valees of the constants are as in Equation (v)

E‘)_mmﬁ[m_ﬁnﬂ]=ﬂl|mg [

Cz:(m.lﬂ'lﬁtm & ] 3

e
b
2

Cq ==
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Table 2.7 (o),
Cs = —wa® — ma —a col $iy
- ' - ine’ 1 {w)
Cs = m|al ;59 -|-|.u.:3(t ;59" _ 5||12EJ j+ w!Ef - —a oot By = €4

From Equation (1) and BEquation (v) the shearing forces and bending moments about the principal axes and the normal force
ard reisting momems may be fourd for sny poim in a slmply-supporied helicsl stair. The valoes of Trs, Nea. Toa. Mea.
Maa and My at the other end of the stair can be obigined by resolving the forces and calcolating the: maments aboat the
three axes passing through Aq; they are:

Tia==Tas Taa=Taer Toa=-Tha
Migm =My, Myy= My, anld Mg = —Mp, i

Starically indeterminare case (both ends fixed)
Here the equations of equilibrium are not sufficient and equations of
deformation and angular rotation at any point are required. Cohen (1955)

modified the general equations of equilibrium for a determinate case
given in Section 2.7.3, The rotations are wriltén as:

ds
d'n]-" —] ?"Pn + KLIJMr dx

1] T

r

d¥p = ds + K M ds
where,

1
=E—L-'

ILE
K:=— and g = —

1
Ky El, G

. A .
J = polar moment of inertia = T Ip = geometric polar moment of
i)

inertii.
Figure 2.13 shows displacements Dy, Dy, and Dy at A. The change
of displacement when compared with that at A can be writien as:

D, D D D,
Ay — P ds+ e — 2 s (2.8T)
p P Tr T

Figare 2,13, Helical
staipcase with all fxed
s,
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Figure 1.14. Drisplacemeni
and other parameters for
helical staircase with ends

The angular rotation ({r,, Y, ¥p) at A causes a displacement of A" of
b ds when the change of displacements caused by the external loads
is added to these two displacements.

The total change of displacement is given by:

D, T
dD, = =" ds + —L ds
a) dby . +Ea
D 0 T
b) dDp = ——ds + —= ds + Wy ds + —— ds (2.88)
i GA'n

GA'n
The effects of the shearing and axial forces can be proved to be negli-
gible; these are omitted from Equation (2.89)

I T
ﬁdm=—fm—mm+—Lm

a) db, = Dy ds
by dD, = -E ds + & ds =+ §y, ds {2.89)
8 Tr

Table 2.8 gives the brief set of equations which have been derived by
Cohen (1955).

When both ends are fixed the staircase becomes six times indeter-
minate, there are six eguations of equilibrium and twelve unknown re-
actions, The deformation equations are used to determine the unknown
reactions. As shown in Figure 2.14 there is no displacerment or angular
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rotation at A and B hence:

Via=Vasa=Wpa=Dha=Dha=Dpa =0

Vg =Wap=Wpp =g =Dpp =g =0 (2.90)
For a circular helix inserting ® = 0 and 8 = &' in Equations (a) and (c)

Tahle 2.8 and inserting these in Equation (2.90) leads to Equations (f)
of Table 2.9 using Equation (1) of Table 2.7.

Table 2.8, Equilibrium equations for indelerminale stancasss,

Reotations:
W = Oy +Cpsin® + Cpoos & + A8 — AgHTE—JmeTB
{— & gin 6 — 6 cos &) (=6 cog B — 36 sin &) (o
+ Ay 4+ Ag + Ag=—
4 4 2
¥, = lt[f_g-ﬁmﬂ fqﬁnﬂ+ﬂ|—ﬂqﬁw]

[ {= Eﬂsm9+mE} E-EImE+EﬂnE-I:mB}]
l
1

[ =5 smE+ElcmE+3:||1E:l] E;ﬂ’aﬂr]

= A =

3 dnd )

.

10066 — Bsin®
-ﬁ;sinﬁi'-ﬂ'q:ulﬁivdz(u)]

1
:.'inntluu:¢[ 2
(—25in 8 —~ Scos &) (8% sin & — G cos O + 450
- 2 A 3

. el 4 4
+ASIEI'15mE +E:||:|'El+ o062 +Ag.+'hsl.nz¢—£|u[l.+u"}ﬂn]

where,

2
= C —xa'ms’ Ks C
Ay m 14 ¢'[ 1 § + Kzsin? )0,

i a P ' 4 3
1“ [2K|tl+u 1+ K]y - m[!{;[l+u dn* ) + Kz con” | Cs

2
i cod i ] T | 3

-— 2Ky 01 Koy = — [y +0' s K €

As = [2&:00 + 6 + K2 }C s'mi[ 101+ o' sin® &) + Ky cos® §]Cs

a? :md:
Ay =+
sin

[!l:'|l_l+1'1I sin’ 4} + Kz cos” $]C3

Asg = —%m—*[i:.{l + o' sin® §) + Kacos® $]C

i cos” &

Koo' — K
ne (Ky 3]

Ag =+




Helical stairs 93

Displacements:
A reference is made to Table 2.9

Consider the staircase shown in Figure (f) as having a uniformly
distributed load of Sw kN per metre and a uniformly-distributed bending
moment of sy KN m, of the helix, for which the values of T3, Ty, Th.
M;, M, and My are given by Equations (1) of Table 2.7. The following
displacement parameters are obtained by Cohen.

Table 2.9. Eguilibrium equations for indelerminate staircases {coml ).

= gin @ Hmﬂ

Dy =Cp+ Oy sin e + Crzooa @+ B8 — By 3 —

~ i gin = — 3o E — & cos & 2] 2
. &( &in : deos }+ﬂ‘5( 0% : 3'3:-1!1 )1—3&?
e 3isne TR oss B —8sine 3 esd  TEsne
+E’( & 4 4 )"' '( 6 4 4 )
-t [C||WEE—C|15inE+E|—Eg(M)
sind z
_B_i{—[-]rin{-:zl+w.l H;I " &(_Hz I,TI:!'!H-F-":.!iHH - Joow ﬁ-)

E-I-E‘ & 4 J5in S
gin® cos sin )+H.5.I_=}

4 4

wa(%
+HT{EI35.IHE a’lmua Bsin® ?ma)
(==

—&'cm i alma & oos B ?sins)]

B
T 3 3 3

[—C"sinH—E'm:mH—B‘g(_gsmg-l_hmg)

sin$oos 2
= pos B = 2sin B 8% 5in B + B cos B + 4 5in B
R R T R r

&Y o058 + Prsin @ + do0s B
+.E'5( ma+4n +m)+ﬂs

(ch

e ;
o [Fom®  Fend Om® . o
6 4 4
Y 2 i
+ﬂ'g(e Eﬁ'"E _5 T&B + EE;"B +Imﬁ) +sin® &1 —d'i"ﬁ]

whese constamts By to By ane glven by

-.-_—-|.-dH

d
L By + B sin 8 -+ Fycoi @+ ByBsin @ + ByBoos 8 + BgB + By cos @ + By@sin® (D)
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Table 3% {cont.).
in which,
a Kyo'a cost &
- —| = ! el — [
B smq:mg:b[ Lens 3%+ sin g ‘]
i K .
31=_;l:unnszwcﬁ—u.?smH (ﬂ-—m)ﬁ1+ —Lil+o +tr’m¢:ll:'_1;]
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sindons (140 + 0 cotd)
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By [ 3 " ?41_ H} LH
wherg,
= ] ool A= oosldn
o=(FH) 5=(72)
N7 - K comd o ]
By = L] = A1+ 8SAg + ————NCs
§ [1 2 5 e
. u.u!zﬁ'lu"'n:w:zﬁ
=L|-A _—
Be [ 500128+ sing :|
Hr:f.[ﬁ.-h.] amd ﬂp;:I.[ﬁ.{q]
M Valags:
Hr,q qu_'fE‘,
Mg = Cyg + Cssin @ 4 Cgoos @ + a8 oot B{Cs cos B’ = C3 6in9') + wa’'
1
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In the special case of syimmetrical loading, the solution may be simplified considerably.

wa =g — gin 8 — Cgll 4 cos &) =
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Table 2.9 {conl},

1l O]+ m =0 = Oy 5in @ = Cyoos B — gwd’ oot

b) €3 =Cyeond — C3sine’

£} —coldgl3 +tandC) = cot p{Casin S + Cyeos 2) — tandly — awd’

Al Cyd g —Cy = Cysin B — Cgcos B — a8’ ool ${C2 cos B — Cy 60 @) — wa™ &

gl O+ acol ¢y + wa® + ma = Cy oo B — Cg un @' + a oot Cricoa B — & sin @) (2

— Cyisin® + &' con 8} + wat +
f = cotéCy + tan dCy — ﬁ;ﬂa - ;:!;c] = oot ${C 5in @' 4 Cp 08 @) — tan $Ce
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The remaining twe conslants are determianed by Cohén (1953) as:
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EXAMPLE 28
Assuming the staircase given in Example 2.7 is now fixcd at the far ends and also

assurking that the loads and other parameters are kept the same, re-analyse the stairs
for the unknowns T, To, M;, M, and Mp end constanis O

SOLUTION
A helical staircase with fixed ends
fl ‘rn
= — = — =397
K3 T
. I« E
0 = j- . E = [1L957
g = (U654

pp=43 =170 and g =012179

d'-|=l‘3.{!l. J3=3D
=596 rn==475

o= 34425, = 37910

Cy = =B TTR456,  Ca = 36460103
Cy = —0L1333309, C) = —§ METIET
Cs = —0.2440182, Cj = 69213908

Substituting into Equation (1) of Table 2.6 forces and momenis are obiained and can
e Toumd in Table 2.10,

Parwmelers -8
0 nar,G a3 mal dmafl Smafé  bGmafe TmalG dmasd
Ty (kM) =]H.E5 =1120 =745  =1%5% O 3555 T.45% 10120 11.854
T k) —2.384 0 2,384 4128 4766 4025 2384 0 =7 184
Th (kM) =i, 774 =31 050 =1.94073 =LTTH 1] 0,778 1.993 1950 .74
+1.B51
M, (kMm} 011 5ma 1.5 (665 L] —0665  —1320 1780 {.1154ma
—F —F
1,542 =185 ma
1.7%0 R B -
My (KN m) 30167 L4835 =524 =10 s} =060 —06dd (520 0,488 1167
EI.EIZI:"Jr_nH.m E-Dﬂ:rtu
My (kN m) 351 ] 4087 3.751 1251 0 =2251  =3T73] 4087 l—3.51]
—4.120ma

e
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CHAPTER 3

Structural analysis of staircases:
Modern methods

3.1 INTRODUCTION

This chapter covers the analysis of stairs using three different methods.
They are:

— Flexibility Method

~ Btiffness Method

- Finite Element Method

3.2 FLEXIBILITY METHOD

The flexibility method of a staircase is defined as its displacement caused
by a unit force. The displacement is derived using the strain enengy
method.

The total strain energy is given by (e.g. for bending)

M2 ds

. 2E1
where 7 = total strain energy; M = bending moment; £ = Young's
mxdulus; [ = second moment of inertia,

Table 3.1 gives the general sign convention. The following steps are
taken into consideration:

~ Establish static indeterminacy number.

- Choose release system to reduce structure of the stair to statically
determinate.

~ This may be done so either by removing supports which are caus-
ing indeterminacy or making individual spans determinate by inserting
artificial hinges at supports with ‘bi-actions’.

= Draw B. M., diagrams due to external loads on the determinate
structure. It is termed as “myg” diagram.

-~ Remove external loads and apply unit load or unit “bi-action” at
each of the releases in tum. These are called m; to m, diagrams defining

(3.1
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corresponding “fexibility coefficients” such as f1y t0 fun. The releases
of the flexibility coefficients *f°, are Xy to X,. The value of M given
in Eq. (3.1} is, by superposition, given.

M = mg+myx) +moxa +- - + mgxy (3.2)

Tabie 3.1, Sign convension

Beerching Moment
Bending moment: positive (Fig. (alp

[f th tension Is st the botom, and the shaps
is concave, bending moment is positive.

Bending momeni: negative
IN the tensican is al 1he wop and the shape
s oonvex, hending mament 15 pogatve

Shear Force
Shear force: positive

1M the force goes upwand & the el sl
of the element ard dowmwards al the nght hand side

Shedr force: pegative

The opposite to comsersaom aiddpléd
lior the negalive shear

Axial force or normal force Y

When the beam is sirefched the force is positive
ard when it is compressed the fore is regative,

Torsion

T
ah Concave upwvard

-

=M
b Cormvex upsand

+¥

¢} Lefside of the elesment (farce up)

=¥

| I

d) Leftside of the clement {force down)

el Axial foree

g Torsional moment (positive)
e Ay B
w /5 3

hj Torsional moment (megativel
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Table 3.1 {cont.).

When the torsional moment is applied (Fig. (g)
with the vector extending cutwards it is treated

as positive. When it is ocourming in the opposite direc-
tHan, it is called negative, In arder 1o illusirate further,

a beam with e different boandary conditions is
examinsl A reference s made 10 Fig. ()

Ar———it's

e ——T
=

T

ML

—

i) A beam with teo different boundary conditions

The final bending moment diagram M is drawn indicating principal

values. Hence f; flexibility coefficients are written as

rrl:‘mJl
r.l'

(3.2a)

For txample, for a stair with two indeterminacies with reference coor-
dimates v and s the following relation can be written

X+ fi2¥2 = =8
fnXy+ fols = —dxn
In a matrix form, Eq. (3.3) is written as

fi fiz | X
|:J"1| fzz]l-’fz]

[FHX] = —{B1o0}

(5]

(3.3)

(3.4)

By inverting the flexibility matrix, the indeterminacy X can be computed

as

(X} = [F1" =5}

(3.5)

The values of {X} from Eq. (3.5) are substituted into Eq. (3.2} for various

ordinates of the final bending moment diagram M.
If the staircase components are subjected to shear, axial and torsional

effects, the above method is repeated and Eq. (3.2) can be written as:

V=5Shear =g+ X1 +v2Xa4--
N =Axial = npg+m X +mp X7+ ---
TFT=Toion=Ty4+ T X1+ T2Xa4---

+n;X;+

T IE XIT

+ iy X 5

‘o4 MaXn (31.6)

+ T X+

The total strain energy of a loaded stair is given by

Mfds

t
Nids

2ET

2EA

L ] 5‘
Vids N T2 ds

5‘
+.=:’f

20r A

27

+ ThXn

(3.7)
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where M = bending moment; N = axial force, V = shear, T = torsion,
A = cross-section, K" = shape constant, G = rigidity or shear modulus,
J = polar moment of inertia, s* = stair structure.

Figure 3.1. Simpson's
Eule I,

myy
L
B —
wl
‘ Mﬁ.
1
L
Tabsle 3.2 Product integrals [ mym j ds.

TR AD AT

mj
L
*.\ Lac kLac \Lac §Lac iLac YLia + ble

c ‘*: 1Lac 1Lac tLac LLac jlLac &Lﬂa + Bje
A Lac dLac Lac Liac jlLac Lia + 2W)e
@ fLac 1Lac LLae B Lac falac }L:u + Ble
& if_ﬂr iLﬂE i.ﬂ.a’: ﬁf.ﬂ; ﬁLﬂc *L{s‘l + b)e
P ) Maie+d)  }la(e+d)  }lae+2d) flae+d) jLalc+d)  }Lo(Zerd)+b(2d+c)

e ——
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The corresponding flexibility coefficients are written as

iy nifig t-'lb'ﬂ T,].n
fEr‘i f d”‘f f (3.8)

fi= R+ B+ 1Y+ 1]
The combined values of the above, where loadings are involved, are
given as

" ﬂinml: fgr T.I.uu TiTa
%j = f d”Kf fm Y

Bio = 30+ 8% + 8% + a4l

The best and a popular method to solve intergrals in the above equations
is by the Simpson’s Rule. Each shape is divided into equal spaces and
contained by three ordinates. Two methods are adopted

L
fﬂh ds = E'[Hlu + My + my3) {3.9a)
mimj _ L[mpgmj  miagmjz  miamjs
f_E.' d.i‘—j[ ElL + 4 Eh + Eh j| (3.9b)

The total 15 L under each curve.

In Eq. (3.9a), L/3 is changed to L/ outside the bracket.

In order to minimise the number of calculations, fexibility coefficients
are tabulated using Simpson's Rule for various shapes. Table 3.2 gives
various such values against noted shapes, Tables 3.2 and 3.3 demonstrate
the use of the flexibility method on staircases with different combinations
of bending, shear, axial and torsional effects. Example 3.1, by using these
tables, sets out step by step calculations for a free standing single Right
stair,

3.2.1 Wedge beam analysis

A wedge beam at the top of the flight can be subjected to differcnt
loads at different positions. Table 3.4 shows some of the cases, It is
important to evaluate deflections and rotations. These can then easily be
incorporated into the main stairs as external effects. In a way they can
act as special boundary conditions. It is also possible that due to built-in
floors and beams, the wedge beam may be subjected to a moment, axial
thrust and shear. Using the flexibility method, the combined effect of
these three can be incorporated into a single matrix and the final results,
such as rotations and displacements can then be achieved. Table 3.5
gives a step by step method of achieving such results.
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Tahle 3.3, Flenibility chart: imegral | M) MG dr,

[T

A

i

{
u,|_|__|j}m M) M 1M, My LM M,
]
k
‘ﬂ;]]].u, LM, LeM; My A
M I §1M My LIM; My HOL+ B)M; My
4
gﬁ 3 M My i+ o My LM M,

LMy, + M, )M,

LMy, + 2M, ) My

B[]+ BiMy, + (1 + 2 M, )

.ﬂ];m”: M M, AT M, My Rifs - 8- pH)as;
M
JU:FEI 1M, My LIM, My Li{5 - u— a?) M,
.ﬁﬁ'IHJ LMy My LM My B0+ a+ o®) M
H[I:tr.. §i Mo M fl M My Tl (1 + B+ BT} M;
IHthdF i Mg My i!-’lﬁﬂa if.ﬂd‘* My
e a’ e 4
L3
s [[[11][  deasiindis + Mid A M My VTN
i
&
<P M+ M §eu, BIMiMy 110,44y
""‘I[DI!:.; LIMi2My + Mig) 1M My MM Lol M M

IH‘_”[dF

LML + By My
+ 1+ md M)

H(2M My + M Mz
+ MMy + 2Mi3 M)

1ol MMy + SMyz)
fil M5 M + 3M2)
Tl M My + 3Miz)

ﬁ!-“.'{lﬂu + M)

LH(OMF, + MEy + M M)

LU + o) M My
My + Me)d My

1ol M, My
Tl M, My
HM, M
ol M My
MM,

fal(5 = B — B2) My M
Tl (3M; + SMi2) M

Tel M M
i,
Tl M M

1M My

el My

i1+ 0+ ad) M My
TelM;y + 3Miz) My

Tl M My
fel M M,
oy M

M M
H My M

Mote: M can be taken as mi Mi can be taken as M 5 =
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Figure 3.2. Flexibility
diagram for Case (i).

)

el

LY
@
A=1
d]
f) 402
®)
5,94

EXAMPLE 1.1: Free stamfing simgle [Tight stairs
A free stamding single fAight stadrcase ACE (Fig. 3.2) is o be analveed using the
fdlowing loading and boundary conditions:

{Iy Simply suppomed or pinned st A and B and rigidly jointed at ©. A load of
1 kM/m is placed vertically on the plane projection of ACE, ie. on bath the stair and
the landing.

(ii} Boundary comditions are the same as in (i) but a load of 1| KNFm is placed on
the landing C 8.

{iii} Supports A and B are fixed and a load of 1 kN/m is placed on the landing and
the span amd the height are taken =5 B m and 3 m. respectively. Ignore torsional effects,

SOLUTION

A Single Flight with a top landing:

El constan

Case (i) release support A and is replaced by:
Xy = 1 as a horizontal force

Take moment abowl &

Ral=1xh

of

h 15
R"_E'T‘M

Hy= =1
Mra=—1=2254+08x3=-1=my

i

mg =1 = %—:3.]25kﬂm
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Axsuming the slope is & an angle 8

wnf = % =0.833

= 398"
24 25
bv=1n% = Geanr — 0™

sinh =0.6401, cosh = 07683
Using flexibility tahles

T =.|iLﬂL'%LﬂL'
=%x5.'§lxlxl+éx‘l.ﬂ:t:I=I.'i'J'
5 1
LT
Xij===—=4EkN
! Sis

Moment ni &, M,

M. = mp 4+ myx =304 (=1}4) = =1 kNm
Resciions:
25 1x5
=4

5 2x3
Ri=1x5-05=45kN

Rg==d= =05 kN

blosments al critscal polngs
Span ' B: & any distance x) = 0.5 m

5
My =05 x k5= {“-2-’- =015 kNm

In span AC, similary ot a borizosial distance o3 m 1.5 m, My o= 0625 kN m and at
a distance of 090 m. the value of M,y = 0.65 kN m which is the maximam valoe in
this span.

Shear ¥
At A

Vg = Bacosd = Hysnb
= 45w (UT6EI — (—1) = (5401
=09 kN
ArC
Vie (lefity or Wep = Vy —wly cost
= 00— (1 = 39 « 0.7683)
= ~1.4 kN

Ve (righth or Veg = By = wiy
=45 -1x3
= 1.5 kN
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Flgure 3.3, Flexibslity
diagrams for Case {ii).

AL B
Vi = Vo — wia
=15-1=12
= =LF kN

Axial Effects N
Owwing 10 variation in geomelry, the sigirs can be subpect 10 axial loads.

A+ A, Ny = anlal force st A = — Ry slnidl — Hycosb
= 4.5 = 06400 = {=1) = D.T683
= 5.54 kN Compression

A+ C, Np= Npy (left) = Ny + wilsind
= —5.041 4 (1 = 3,90 = 06407
= —4.02 kN Compresidon

Nc = H{_‘B [ﬂg]'l.!] = _Hﬂ'= —d kM

Case (i), all dimensions are the same, bat o load of 1 KN/m is acting on the landing

C 8. All dangrams for Aexibality nmist fow be modificd since myg diagram is altered.

My at £

Take mosment abool § when 13 = 2 m:
Ryguwim]uw2nl; .R&-%
Ry =

mg, = — %2 =12kNm

LA | e LA

Similarly when x3 = 1 m from B

mip = 1.1 kM m and x; = 1.6 m from B
mg = 128 kN m which is the maximum
iy diagram of Case (i) is stll the same

h=25 m=H,

k)

L1 kMim

120
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Figure 3.4, Flexibality
diagrams for Case (iii).

big

T

b= % ®* 390 = 1.2-1) + % ® qi-1x1.2)+2.3)
= —21.60

X =L3TkN

M = my+my X
M =124(-11.3N =017 kKN m

For X:=1m
Myz = 110 = 069
=041 kNm

Case (iii), when top and botom suppons are fixed and only the landing C B is loaded
with | EMN/m.

a) s | kMim

Im=hk=H
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_ﬂ] = %I:.ﬁﬂ'ﬂ | = [:I
g
3
f:z=%lﬂn1 w 13 +id = 1 = 1)
-3

_fg;-iﬁl'-l-lll"l i 1)
4

k]
fin = fyy =1

1
fu=fra=cxlxD
2

3
1
f|1=.|"1|=3':5=<|='¢]]

1
-!-h}:!l:ﬁj:i[‘*ﬂlkll

-
L]

CUY Ohed Ofd

i : ¢ X byg =1
[.I":J] U";z] U':u} X3 b ={ tm=1}
u’.f:] (faz) u:a} s o=~
| 0 . 7
X =030 kNm
Xz = =059 kN m
Xy ==T0kNm

M eammy+m X+ maXz+ miXs

My = 0+ (0 x 0.30) + (03(~0.59) = (1 = 1.70}
=-1TkNm

Mo =g+ my X+ mpXy + maXy
= 0 {0 030 & {1 x <0580 4 (0 = <170
= =059 kN'm

My =my4+m Xy + mpX;+maXs
=0+ (1 % 0.30) 4 (0 % —0.59) + (0 x —1.70)
=030 kNm

Figuse 1.dde) showws the final W diagram based on 1 kMN/m. Assuming the dimensions
are (omstanl, any change in the load can simply be taken as pew load EN/m. The
respective values of M of others in the above 1 kKM m cases ean be enhanced by that
faciar.
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Table 3.4. Deflection and roistion for wedge beam under concentrated loads.

—_——— .-

1. Funad the wvertical deflection &f B

ET constant w
bp = | —— dx A e a
& El
a
= E;fill{lﬁ"n = al+ Wa = al 1Wa w -
_swa o Ml sy
~ BET _j'* :
2. Find the slope 2t 8 - M
Ia A
g
g = s
o= [ 43 =

o
a

= m[it!ﬂ"u = 134+ (2Wa = 1)

+ 2Wa = |+ Wa x 1]

_ 3Wal
T OIES 2
3. Pind the slope at the free end D .'J\—-_._Tmr\‘—:_lﬂ'
1
o = | MO -
J TED m ] Ia!
= [2(2Wa x 1) } /
BI2ET) ﬁ -~ 1
-
+Wa x| +IWa =214+ Waxl)
d L
+EE—I-[IW.|1:-'|+W|:1|:[| 1E & £
- SWa' a B a C a D
4ET 1#a
AP S
i) Lowds of tips
LT} J ])
A 1
i} Loads ofher an fips
2z

"
Figure 3.5. Stair girders or J\f"\‘l
slringers under

comcentraed boads, ma
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Table 3.5, A combined effect of three-stress resullant on 3 wedge beam,

A canmtilever wedge beam is sobject to an axial effect &, bending moment A and shear V' as shown i Figures a)-e) for
which the reference coordinates are given in Figure 3.6, 10 is assumed that EA and ET for this beam are constant.
For ¥ = |

L
= — = _ ]
T Ea’ fy=0, fy=0 ]l
Far M =1 a 4, ET const \f 1
=0 =g =i "/
fiz=0 le—ﬁ. Im——m
For ¥ =1
L? L? "
- - ﬁ A, Ef pemst 1\
Gl Uiz Ul H \-’} 3
H 0 0 i
_— ) (fa) G2 G
[F] = fAexibility matrix w . -é-; _!% ) | .
Ol O (fas) ]
Ry g =

hence

By N
{I} = displacements = { 8 r=[fI{ M
By ¥

d)
AN
3 -y
|
) 1
Flgure 3.6, A wedgs beam s .
unider three siress _% &I
resali@Enis,
EXAMPLE 3.2
The layout of a @aircase with one fight and a londing is shown in Figure 3.7 in a
horizontal plane.

The simactural layout of the bailding floor is such that a load W acts on the Right AC
in its plane and which canses torsion along with bending. Using the flexibility method,
calculate 2nd draw the torsiomal moment. Assume Ef and & J constant throughous.
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B !
i
| (T 1
I

44 i ¥ c

Figure 3.7. A hosteontal i I
plan view, D




Flexibility method 111

Figure 3.5, A single figha.

SOLUTION
Ome flight staircase under torsion
Ap the pround focr, the Bight is fgidly pointed dnd the landing is supporied sach
that the end I is taken as planed of simply supposed.
Lzt Mp represent the moment at the boitom and M the momend 2 the bop.
Flexibility disprams sme given in Figures 3.7(a) fo (f}

ar oo
i w e _2““”+m J[H 1]
#! 3"1
3El TGl
. eEl
= 14—
3E] ]
g —w 9E[
Xl—‘E—T[’ EE}]

M = mip 4 My

Solutkons are shown in Figunes 3.%e) and ().

EXAMPLE 3.3

A stringer beam b supponed &t ground level A and at the first floor bevel B, Dus
o the other building requirements, il bacomes necessary (0 support this beam. ab any
intermediate poimt C. The plane projection of the system with loads are shown in
Figare 1.8, Using the following case studies, calculate moment of the stnnger beam
al

a) A and B are simply supported and the colamn iz placed at the centre of the
stringer beam. The load w (2 kN/m) acts on the emire beams, The floor al the suppor
B sinks by 1 cm. Take EJ = 12.5 » 107 kNem®,

b) The column supporn at © due 0 construciional problems has been moved closer
e A such that the C B i ool prester then 1.5 times span O A The load iz kepl the same
a5 in aj.

¢} As in b) but the uniform losd w acly oo AC,

SOLUTHON
Stringes beam analysis
ap

f 1L
Elfn -erfd.: 37
o
f s wl! L
=
Efﬁm:fmlmnds:ET xgxl
0
c B
— Column
D
A
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- ——— - e M A R~ e Ao mA e me— e A —

]
J{|=-£=-:u|{..

fu B
If amy spam AC = L, then

X = gwiq

Me = myg +my Xy

w=2kNm L=I10m
M= =25 kNm
il

Vp= — =20 kN
=73

5
I|=Exiw]D=15k.H
i
¥ = I =§1.u{.1 = 7.5 kN
iff the support sinks by | cm
X = -ﬂlu ~(L1875 kM
fn
Mc = g + myxy = 04 1000 1875) = =1.875 kNm
5
final X _;-iurh = (L1875 = 248125 kN

1
fimal M = _% - LH75 = —26.875 kNm
Figares 3.8(g) to (k} give the step by siep procedurs

hi
Ly=10m, La=13m

(Figs 181} g (phh

El_r'u=1il.ﬂ:~={%umxlxl}-b(%xﬁxlx!}-%!

1 1 1555 1094
EH-m:{iH]U!ﬁxl)-l-[ixlﬁxl(lxi)]-T

]
Xi= -2 o 418 kNm= M,
i

@) A reference is made 1o Figores 3.8(a) o (v)
Effll=[%ﬂi|.ﬂ‘n:lEt)-l-(%!lﬁﬂlxl):?

1 250
EIEI|L=5H|HH'15!]-T

k3
Kjm——2 = 10 kNm
I

M = mig + mp Xy
Me=04+1=X;
=X;=Mr=—10kNm
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10m
k)
q)
®
Figure 3.8 (coni.).
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A C w=2kNm

Ly= 10m Ly=15m

Figure 3.8 {conL).
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Figare 3.9. Tread-riser

SI3ArE.

+

44

A

E—0
¥

3.2.2 Analysis of slabless treads-riser stairs
{Saenz and Martin method 1961 )

In this analysis it is assumed that, owing 1o the possibility of the existence
of & rigid beam ai the beginning of the landings or a thick part of the
slab at the ends, the stair is fived at the end. For architectural reasons the
treads are of the same size and are even or odd in number. Figure 3.9
shows that when the stairs are cut in the middle and Xy = 1 at this cut or
section, the My diagram is constructed in the usoal manner as described
carlier. Generally bending moments, shear forces and axial forces ane
developed. Since the loads are symmetrical and the stairs in Figure 3,10
are unsymmetrical the values of V' and N are zero, and hence only the
Mp diagram is constructed. This is shown in Figure 3,10

2
Hi My
= — s, = — 310
_I'rn Efdr Em El { }
LITH]
El=—— 310
: i
Odd and even number of reads:
odd number of treads a = 2n + | (3.12a)
even number of treads ¢ = 2n (3.12b)

for the even number of treads F/2 load is taken into account at the top
of the middle riser.

Odd number of treads:

= E—&{Cl + KC3)

/R W W
i by
T =1 ki _
- ) —+5
" ' 1
L]
I | 4]_:_ - dl.lp'lm
h i n BRM
L] 0 N
I.l e
: “&‘If ‘=
i 1L i
T L TR SN T

rfE

al
z
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Figure 3.10. Moment
tagram [or exiernal
loads P.

Figure 3.11. Even number
of treads

- ———n

PLE,E. 0

F
A

= TR

oy L

e il |

: -

:1| | i |P

2uhy

A
=
=

2 :

PLE,

s 1 !ﬂl Eagram
] L “ “
& d H It
L M Ly L Ly H_ L
{2+ 1)L
P B
P )
Al p My =Xy
gl =y
Rl
M;=X
o i Ly L L
al, al,
=z a
al.
Whene
=2t e B=lIn g (3.13)
2 L In
2PL% -
- bio = Ci+ KC 3.14
10 E‘,“I{3+ a) (3.14)
Tables 3.6 and 3.7 give the values of C) to C4
where
X _
Cy = nin+ 1) l'.'.'.1.=EE—l]I (3.15

4 6
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Table 3.6. Ondd readed stairs.

Coefficients Mo, ol treads ds = a

3 5 T 9 i1 13 15 17 19
L 1.50 250 350 4.50 5.50 650 7.50 8.50 9.50
Cy 1.0y 200 300 & 00 500 5,00 T B.00 L]
1 050 150 3.00 5.00 750 10.50 1400 18.00 1250
Cy 0,00 1.0 4.00 10,00 2000 35.00 56000 4,00 120000

— v A ———— s ———— . ——

Table 3.7, Even ireaded stairs,

CoefMicients Mo, of meads ds =2
2 4 L L] i 1z 14 16 18
) 1.00 2N 3.00 40 5.0 6,00 TG 8.00 LEL
Ly 0.50 1.50 250 130 d 50 550 6.50 .50 E&)
Cs 0.25 100 225 4,00 6.25 9,00 1225 16.00 20.25
Cy (.04 0.50 250 T.00 1505 27.50 45.50 .00 10200
Hence
Xi=M (3.16)
B Ci+ K¢
X =M=-"0_pp 2T 24 (3.17)
FiT Cy 4+ kCy
mid span moment when it is simply supported
nin+1
M=my= EI—}PIA I
4
50
Ma=Mp=X,=Xp=20PLy—my {3.18)

Even number of treads:

Mow take P/2 load at the top of the riser (at the top of the middle riser),
the coefficients €, Cz, C3 and Cy4 are changed for even nuombers. In a
similar manner each one of them is evaluated. These values are given
below:

Cy=n 1= . Cy=—,

(3.19)
_nfn—l)in - 2y min-=1)
- 6 3

Omn the basis of the above equations, Tables 3.6 and 3.7 are prepared for
odd and even treads for stairs.

Cy
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Figure 3.12. Rotations
allewed @ the far end of a

anircase.

EXAMPLE 3.4
Calculate momem 81 the fixed ends for a sisdrcase. Using the following data:
P=158 kN
a = 12 even number treads
Ly=0219m
fpi =853 1077 mt
Iy = 1667 = 1077 m*
ky =0.178
SOLUTION
Slabdess stairs

A reference is made o Tabde 3.7
fora =12 coefficienis O = 60, Cp =55 =00 Cy=115

. Cr+ {1+ E)ey

my = Fly -
Oy + Cik
- 9.0 4 (1 + 0.3265) x 27.50
= 2 O S S x 09265
4547875
=07 = 4,
0 1952( e } 2 kNm

Xa= My

Xp=Mg=207PFL) —my

= (1= B w 258w LITH) — 4.2 %= BT757T kN m
Bowndary conditions
I ‘When the landing exists on both sides in & staircase
Figure 112 shows a staircase in which A and & form ihe cemires of lwo opposing
lapdimgs such that symmetrical rotstion can occur &t these points. which act a5 the end
supprts of the staincase, When 64 = By = 1 &l these poinis, the resoliing rolatbon st
the mid span section will be 3, = 2.

¥ 2
My = mid 5 momen = X = e = = —
! par fu KT
. S
Ly
oy + ko
E{;_||: 1+ 1:|
_ -Ely
Eq{Cy + kcy)
Kag=Kga
EH-I

(3.200)

(3.21)
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The rest of the procediss is the same as given earlier.

I When the far ends casrying landings of a statrcase ase fixed and addittenal suppons
exisl at the other ends of the landings

Figure 3.13 shows a typleal stalrease where landings are loaded with onifonm load-
ings

Thee seiffness ia given by Bg. (3.21) for K5 or Kpga (3.22)
44,
for the landing AA;, the stiffes Ky, = —o-

Ly
Where Ipy = sseond mamenl of area of the landing & vertical section

L; = landing span
The distribotion factos DFy 4 from Equations (3.21) and (3.22) ks given by
4
G
for the landing only where

DFH|H =
4+

Iry

Ls

Lo =5
“{LJ)

The distribution factor of slabless = DFgp =1 — DFy 4 3.24)

K = (3.23)

tread riser slaircase AB
Chwing 1o a symimetrical deformeation, the moment distrbution ot suppon A is required.

Map = Xap = —Xpa = DF 4 My — DFagM{, (3.25)

M4 = the final moment &t landing A4

MY, + M
- M5y - m-M,l %I (326
mid span moment M = mg + (Mg + M, )PFag (3.27)
Fi 13, A stal !
Lﬁr:;mwar:d Iﬁ P ; who _ [Man, + M4
wi : reactions Ka = O F + Y e S L) (3.28)
on steps and uniform loads ] Ly
on landings.
P "
P
I ky
_.E'H- P E o iy
.: oy
1 B hy
! Sl
||
I
i
Ly Ly Ly H Ly Ly Ly
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[ TH]

5

——

lP

L
[} F A
1 p
i w iy
i § My
1] iy
! L
h
n

Ly L Ly H £y L | Ly
2L, +al

Figure 3.14. Stairs with
equal landings with no
supparts 21 A and B,

Figure 314 shows the staircase where the supports mi A and B oare removed. The
load is added ar A and B and it i3 assormed they have equal deformation. The vertical
deflections al A and B are equal and the moments reactions wre:

g
M{4=1—3DFas
Maw = —DFan
£ 4 = reactions due to vertical placement

I+ 3DFua

2L, G2

When supparts are removed, the value of By = 0, bence the finsl moments become:

D Fy a [ 1
Maja=MJ , - I'h {H:,—HL,]I=R—:"{1—§DFA,4) (330
A
. 4
Man = DFaaMliy — DFasMi 4 - R—j"nrﬂ (3.31)
A
R
M= my+ (Mg + ML DFa .+ ﬁ‘,—,‘l DFae (337
A

EXAMPLE 1.5

Calcubare fimal momens for the staircase using case stadies | and 11 and the following
data:

P =253 kN
a2
Ly=02Mm

g =853 = 107" mt
LywmZ0m
w=T.35 kN/m

hy = 0178 m

Ty = 1667 = 1077 m?
e =g

Assome clockwise moments are posilive.
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SOLUTION
Siadrcases with specific bowndary conditbons.
feihy
Fm—— =(3365
T Ly
for a = 12 poxffichents ©) = 6.0, O3 =55 5y =910, Ly =27.5
C1+ (1 +K)Cq

g = PL; =
T+ KCy

=58 kNm
fily
Iy

4

IJF_,‘”‘ ] ‘ T]Eﬂ.ﬁ =-I]|;|'EZ
( M TEEEAC S

DFsg=1=DF4 4 =0038

Xo=Mup=T113kNm

LI 735 =20
x"'"l = H{"'I = _'E]_'i- -] l—; - —l.ﬂ: kN m

K= = T.16H5

Xagh = M = 1.225
Mag = -0.962 x 7.123 = 0L.038(=1.225) = 650 kN m

0962
H.I|A = 1,225 = [T.123 = (=1.225)] = —1"-' = =] 30 KN m
magy = M = 5,834 + (7.123 = 1.225) % 0.038 = 6058 kN m

Ram2x258+7.35 x g — {—1.504 — 7.123)/2.0 = 33.61 kN

3.3 SLABLESS STAIRCASE ANALYSIS UNDER UNIFORM LOAD

The slabless tread-riser stairs with the far ends fixed are subject w a
uniform load w = wp + wp where wp is a factored dead load and
wy is a factored imposed load. The flexibility method is again adopted.
Figure 3.15 shows the flexibility diagrams on the lines suggested in the
preambie.

Both ends are restrained and

L = total horizontal length

=(n+ 1)L (3.33)
moment of inertia at any reference point = fiy

I
Ip= % (3.34)

hence the fp/T for the riser = 1
by symmetry X| = X3 (3.35)
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I = Ay g ) — EndEmenis m the rissrs
O rrrrIrrrmn %I @
(‘ ..tr|-|.
— i
i L a E 8
! i 4 iz — MMM%Q
iy = MWAmEnis i ireads )
P "ee g
“wiE @
Figure 3,15, Flexibility E E E E
deagram foe & unifermly
losded slobless stadr.
wi.?
iy = EFIM|mUd.5‘ (3.36)
| I M
Elwfi) = _EMW'L(JL, + L_1) (3.36a)
l I M
El = —miL — 1.36b
w S 5™ (f;]+L1) { )
h
B 3 I L.
X = (3.37)
T ] L(-’m +ﬁ_1)
l Iy Ly
since my = |
F 2 2
Xi==mg= Eﬁ = —WL (3.38)

3 1% 12

It is interesting to note that the fixed end moment for the symmetric
slabless stairs, without landings. is equal to the fixed end moment of a
straight clamped beam with the same span and load. The simplification
of distributing the height of the riser between the length of the wread is
acceptable with a high degree of accuracy provided the stairs have more
than 4 treads. Hence the uniform load can be written into a concentrated

load as:
g = £ (3.39)

Ly
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EXAMPLE 1.6
Examine, in the light of the above techniqoe, & stabless stairs wsing the following data:

P =258 kN
a=12
Ly =0279m
Fpy =853 = 107 ot
by =0.178 m
Hay = 1667 = 1077 m*
SOLUTION
Slabless stains
From previous calculations )
coeflicients ) = 6, €3 = 5.5, Oy m 0.0, Cy = 27,50, k = 01,3265
€3+ (1 + E)jCq

= 4.2 kN m
L_|+L_:|F

mg = Ly

ur = —P—' = 9. 2473 kNm
Ly

Lo=12x027% =138 m
3.348°

mg = 9. 2473 = = PL95674) kN m ~ 1296 kN m

1
Xy = My -iﬂlg-ﬂ.“ kM m

The: value of X = X5 = Xg = 5754 KN m from the previous method, They both are
in agreements the error belng 1.2%.

331 A peneralised rase of even and odd number af treads
with variable thickness in slabless stairs

Consider a slabless stairs with any number of sieps or reads ‘n’, where
‘n’ may be odd or even. Let the thickness of the tread be #p and that of
the riser be .. Again, the value of K will be written as:

— i1 hy ]
E=|—+—
(fm Ly

hence m=!—; and Iy = 12'

The fixed end moment M at any end can be represented (Fig. 3.16):

(3.40)

_PnL1{n1-|} 1+ K

M= ®
12n 1+ﬂ—lf (3.41)
L

=MFKg

Equation (3.41) contains two terms: the fixed end moment MF for a
sumple structure which is ouwiside the brackets and K with a ratio of » in
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F

Figore 3,16, Slabless stairs
with variable thicknesses of
riser and ireads,

the bracket. The variation of “Kg" versus ‘n" can easily be determined

and plotted. Figure 3.17 shows a plot for K g versus a for varous ratios
of hy /L.

I EXAMPLE 1.7

Solve the saircase given in the example sbove using the above equation with constant
and wasiable thicknesses
The: following data can be used for the solution of this problem:

P=158kN n=a=11

Draza 1 Daia 2
3 I
Li=020m %= 001043 LAY LTI
[ Iy I
Bonsas, M _psny Mo o
Ly I Ly

the section of the mser and the tread has (o reslst exsctly the same bending mosment,

SOLUTION
= hylyy
K = 0.3265 E= =
Lyl
. 1+1
Ko = —t 000y e Kg= = 104348
1+ 5 x 03265 1+ =1
Mo MK M=M Ky
258 % 12 % 02790127 — 1) 258 % 12 = Q27912 — 1)
- 12x 12 B 1212
w |OXR = 8757 kN m w1438 =B 9% kMNm
praphically computed graphically computed
Kp = 1021 Kp=108
M =8T5T kMNm M =897 kNm

The vwo resulis from Dt | &nd 2 show very lile differeoce when the thicknesses ang
diffierent for the same ratbo of b ) /L. For technical reasons, both may be acceplable,
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1.35

1.30

1.25

&
K
il
—.ﬁ|||IL] Vﬂiﬂ:.{.:‘l.r{.:l
| - = by /Ly varies: I,/ I = 0.5
=4
5}
=
=3

Figuare 3.17, Plotled values of the vanation of K with »,
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Figure 318, A slabless
stagrease.

S

—_reaan o ——e e —

0.279 0.279

10 roeres ‘

0.10] . -l-

=Lt

[=]
=]
[

125 0.125

EXAMPLE 3.8
Figure 3. 18 shows treads and risers for & staincase. Using the given dimenstons, caleolabe
{1 and My for each step snd determine thelr ratin, Usz the sistrway width as 1.0 m.

SOLUTION
1.0 s 03P
fig = __E_._=E]_1,f][|—1' o
12
1.0« 01283
iy = S o 162E x 10T
12
1
A 1954

e

3.3.2 Free standing staircases with different loadings — analysis

Three different types of staircase with various boundary and loading
conditions are shown in Figure 3.19. In Figure 3.1%9(a) only top and
bottom landings are simply supported at far ends with live loads g,
and gg. Figure 3.19(b) shows a continuous support of the flight with
cantilever landings.

g, and g, have relations. In some cases g, = 1/3g, and g1 = 1/3g,.
Slight changes in notations were necessary so that each one in a specific
span might be relatively identified.

Figure 3.19{c) shows all points of the staircase that are supported.
The loads gy and gg represent imposed and dead loads, Figures 3.19(d)
and (e) show generalised dimensions, The total load

W= Y Rk + Yok (3.42)

where, y, = load factor for dead load
¥ = load factor for imposed load.

The general bending moment is wi?/12.
The general flexibility equation is writlen as:

f,‘r—fmrm"ds+ U‘.UJ TTJ. (3.43)
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Figure 3.19. Stairs with
different loadings

gL G e 9 g 4p
Faseainnaniinughar-—~ - =R AR ERm O f==iiidaannianns=sos )
ST S S - W - S - U
a) b) c)
T—...-
le
Ly
|2
iLW: L
d)
Hl/é;ﬁq
wm 70
lL,,,l L L
n g
o= [ Mimo vw LT
Hm[h““&]m o4
i & 5

0ar

] L "
= E mimg + E vy + E T8 with multiplying factor (3.45)
Looking at the landings and the flight in Figures 3.1%() and (g) when

Xy =0or X; = |, various displacements, rotations and moments are
shown,
Erf 1J’_ +EiLP:"
11 = 7L&2 =
2 B
3 F
qp L3 ( L py Lm’)
Elsjg = —= =Bl gp—=— + pn—— (3.46)
24 " o
where
Dy 3
= | — 47
o= () @347
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Dy = depth of the flight slab
Dy = depth of the landing slab

If both slabs have the same depth the value of B = 1. Tables 3.8 and 3.9
show various parameters for loading cases and boundary conditions.

2
sl e

fu 1. B ﬁ)
1+§1||( La

It should be remembered that g, or gp will have a value of w, the total
load funit length.

1

Table 3.8 Moments for two cases.

My = right momenl of x = my; + myq + oy

my = myy

For Case | = myym = Mom = qpli, /8

rI'IJ,....=U'
mF=_—an=x|

bee: | B e O

M = =y = X|
Case | Case [T Case 11
03 (4 05 0.6 .07 0.8 g 1.0
| m 219 175 117 145 165 1] 1ER 9.6
™ 139 113 405 458 581 6.81 T4l 0.0
m s 113 278 26.4 57 6.4 FrA | 9.8
m 263 3.79 518 6.85 9,00 121 15.6 L9
i 10,0 9.6 8.2 BEY 246 842 g3 812
K 264 451 667 9.4 125 1600 200 4.4
11 m 185 168 149 3% 324 314 EN | 307
i 200 b T 385 6.4 21.3 18.6 169 161
m 208 229 158 A0 A57 4.37 533 661
m 4.18 4.55 5.08 5.96 115 B.55 104 13.2
= L. 1.48 1.93 236 178 19 161 4402

(DM 10453

wpuy = WV Sk, where Ky = V‘.,n'wj,

Kiv= Mg
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Table 3.9. Momenis, rolations and displacements for three cases.

Moment my = mg =y # myg

Rotation & = &y + Hm + S S
Displacement wy = wip + i + Wi ﬂg{ %F-P g
n?

i’.‘:.lal Cage T
LpylLps 03 04 0.5 0.6 oy IR 09 1.0
My 412 441 489 5353 6.34 132 846 an
Mym = .;,.E.i, TR B0 846 .11 957 1.0 12.2 116
i RS2 105 130 16.5 21.2 7.5 357 461
My = 174 g4 51 654 831 10.3 126 153
Wigprry = k£ 183 6,32 10.1 158 435 3.6 512 865
Koy = q,L" 37 ED 158 3D 535 95.2 161 270
Ko = gply, ixn 6.3 11.5 192 303 452 652 01.2
Mg 6.9 54 49 45 4.3 4.2 41 4.1
M 126 10.5 L T 6.2 9.4 9.6 102 n0e
FH 200 91 515 0.1 33z 9.4 265 25.0
Wigye = & 4.7 53 63 T8 9.7 12.1 154 0.7
Kiyr = —F.uLE., 162 308 5.11 T.76 1.0 14.7 1859 236
Ky = J’q;..[.i,]I 1.86 34z 555 BGR 12.8 18.7 26.7 iz
Mgy 22 2358 15 165 .74 23 285 19
Mye =M 4.6 57 19 125 350 100 on =310
(- 21 22 15 i 4.0 51 6.5 &0
Kiyr = =mplL py 1.06 1.56 203 246 1.86 326 165 4.05
Kyr = ﬂu-l-"-” 1.66 313 513 760 10,9 14.6 184 2410
(DN 1045)
EXAMPLE 1.9
Using Tables 3.9 and 3.11 where relevanl, compute X} and Mpm for Loy /L py = 0.5
SOLUTION
Free standing siadrcases
using Eq. (3.42)
B=no, fp==67%, dg=193
2
% B .fsn (ELE]
=L
Xy = 2 gL L; L:
L2 () CX
2 L.93 L
L L
m..:mmmcﬁgu:“q—*i i_ il
B My L i

Lpy
Fjpm, Wiy for f and —
Ly
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| can be computed. The valug of

i _ala
Py = T2

rel; Tahbes 3.9 and 3,11

Table 3.1 Coefficients for the determination of bending momesis of siatreases with two sides of the landing slabs
supporied

¢ Lpggfly 03 0.4 0.5 .6 iy 08 0.9 1.0
i Iy | 18.7 3T 3LT 53,8 159 =T62.0 =530 =31.5
M Lm 14.0 111 164 0.4 842 162 695 638
0TS i L] .0 250 35T 532 131.0 =210 = 4
Mim 15.3 133 1.8 10.5 Q.42 B35z 1,76 T.12
3 My | 141 (L% 194 23.1 B9 1332 625 1610
M m 17.1 1.2 136 12.2 1.1 150 9.17 .42
025 m 13.5 142 152 16.5 181 ot 231 17.1
i m 19.7 183 1649 13.5 14.3 1332 12.2 113

[}y = thickmess of the fight slab
Iy = thickness of the landing slab

oy
= (1)

Table 3.11. Coefficients for the deteretination of bending seoments of staincases with theee sides of the landing slahs
supported,

X = —i:.L§ _ EL%
iy T L
i Lpyily D3 04 0.5 06 0.7 0.6 05 Lo
1.0 L 20,5 35 8.3 =790  ~3589 =181 —I2T7 -85
L. 131 108 .06 T6h f.54 564 49 43
0.75 L 179 136 mnl Inin =992 =3l.5  —IED -123
Ly ldd 121 02 Bt T4 .38 554 485
0.5 i) 157 18.6 39 354 TR <2080 —413 119
L 6.3 14.0 120 103 8O 77 f.7 B85
0.2% L 137 149 I6.fs 192 136 EA R 530 205
LT 152 173 154 117 121 10.7 L B3

(DN 1045

Flexibility analvsis of a free standing “scissors’ fype staircase
Figure 3.20 shows a typical ‘scissors’ type staircase. Figure 3.20 also
indicates the deformation of the same staircase in plan.

The stair is idealised for the fexibility analysis. Various diagrams
for mg, my and mz are given in Figure 3.21. Various rotations *#" and
displacements “w” with subscripts are given in the same figure.

Determination of reactions and moments
The following generalised equations are derived by statics.
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Figure 320, Sclasors type
free stamwling stairs

I ;F‘ El A = -
Hy Migp Im xw
—— S

¥
g I, L,
* » =8y 1} wy, =5,
o, Py, | wepdirh o
r LF:' T L 1 H_L
. g a) my diagram b) my diagram ¢} m; diapram
prerbintbnt S AT X,=0 =1
Reactions and morments
qla L3 Gplptp
Rain = = | | -— —_— 3449
a0 = Fy 5 ( L1) 3T {3.49)
2 2
qﬁtz( Lz) dplp Lo
= —=—=|] == — 3.50
LT 3 T + T (3.50)
2 1
q. Ly qpl
moL = IE ; 0p = =g £ (3.51)
3 LI 4 L] )
Kpfor = gp, 22 + po=22,  Kpbor = ggp—2 + pg=22  (3.52)
P qﬂp & " " |l'?I:Ip ] Py W
Hy
By =T, mipg=RlLp forX)= (3.53)
Ry = -E- mag = Kxlp, forXz=1 (3.54)
L3 L L,
Kpb, = By 2L, Kpbo = =2 Kby = R 22 (3.55)
el 1 By pUlr By p'ﬁ'lr F] wo
Where f) and wy are rotations at 1 point.
Flexibility coefficienis
1/ La
iy = 5(_m.m + L,,)mﬂ, +BRUK b1y) (3.56)

1 Lz |
fiz= Emﬂ*wﬂ + 2mapg) + inmwmgn +BR (Kpbze}  (3.37)
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g (kN/m?)

P, =§R,. KN/m

Figure 322, Resclions dus
o load g5 on landing

e ——————

1 Ly |
fn= EE{I + mag +'“as]'+ SLFMEE

+ B K pize) + BR2 (K phze)

1 Lz 1 L3
by = __'_"mlﬂml:lﬂ"i' '_"""]Bml]l.
Jeosa Teosa

1 1
+ -L::ﬂ' 18mog + -me MO

— BR (K pdgr)
1 Ly L3
W= EEWNI“ +mag) + _mT“ + magimog,

1
+ Emezg(mlj-ﬂ + mgp) — PIK g2 ) — PR2(OK plae)
where

LS
ﬂ-(a)

The Aexibility matriz [ f] is written as;
[ (5]
I Ban

Sa2bio — fizbao
-

The moment at B is writlen as:

_ b = fizdio

X|j=-
I firfa - f

Mg = mpp + Xymg + Xamap
The axial force N 15 written as:

X
Nga =+—1, Npc ==X,
s

(3.58)

(3.59)

(3.60)

{(3.61)

(3.62)

(3.63)

(3.64)

{3.63)

The load g, gives the fellowing reactions as shown in Figure 3,22

3.4 FLEXIBILITY METHOD FOR HELICAL STAIRS

3.4.1 Introduction

A number of analyses for helical staircases were given in Chapter 2.
Scordelis (19604, b) developed an equation using the flexibility method
to evaluate redundants at the mid span of helical girders when they are
subjected to uniform loads. Results have been tabulated for the midspan
redundants of 510 different girders with rectangular cross-sections. The
variables are the horizontal angles, angle to slope and the width-depth
ratio of the cross-section. Torsional effects are included. In order to bring

uniformity to the text, some symbols have been changed.
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Figure 3,23, Geometry of
helicobdal girders.

3.4.2 Naovation for the analysis

o = angle of slope

B = width

D = dl:plh

fyg = relative lingar displacement of the x-axis due to a uniform load
of 1 kN per metre of horizontal projection with the redundants
equal to zero

dpp = relative angular displacement about the x-axis due to a uniform
load of | kN per metre horizontal projection with the redundants
equal to zero

fer = relative linear displacement in the direction of the x-axis doe o
Xy=1

Jex = rc-;ar.ive angular displacement about the x-axis due o X, = |

Jzr = relative linear displacement in the direction of the x-axis due to
Xe=1

frr = r:ialiv: angular displacement about the x-axis duec to X, = 1

R = radius centre line

2¢ = a horizonual angle

X: = a horizontal force along and in the direction of x-axis

Xy = a moment acting about the x-axis

3.4.3 Basic analysis

Figures 3.23 and 3.24 give the layouts of the helical staircase with var-
ious parameters. The displacements of the redundants are writlen as:

x.l'f.l:.l: + xrf.tr — _E'.rﬂ {3-6’53
Xxfrx + Xe for = =00 (3.67)

Due to symmetry fro = fir

a) Left hand helicoid b) Right hand helicoid
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Figure 3,24, Positive
directions of redundams,
mamenls and s,
Mewe: “The moment vecior
i shown with a double
arrowhead,

The value of Sy is wrillen as:

+4 i 44
e gz M) Tl g e MR )
Byp = EL Rﬂ¢+[ ElL Rd{b+f G Rdp  (3.68)
- -8 —

where men, Mg are moments in *r’ and ‘5" directions, and myg in the '’
direction due to a uniform load of 1 kN/m of horizontal projections with
zero indetermingcy. If 8 is located at mid span, the following expressions
can be writien:

mg = —RA(1 — cos8) (3.60)
myn = —R*(B — sin8) sin o (3.70)
myy = —RE(H — sin§) cos o (3.71)

My, My and my, represent bending and torsional moments in the girder
dpe to X, = 1:

m,q = —R(0gind)tan o (3.72)
mgn = R{sinf) cos oc +R (0 cos ) sin o tan o (3.73)
mg = —R(sin ) sin o + K6 cos8) sin o« (3.74)

My, Mg and my, represent bending and torsional moment in the girder
due to X, = 1:

Mpr = COS B {3.?5‘}
Mg = sindsin o (3.76)
My = sinfcos o (3.7

where EJ, and EI; represent the bending stiffnesses about the r and
& axes, respectively, and G J; represents the torsional stiffnesses, [; =
Ky BD?, the following values are to be taken:

B 0 | 2 4 & g 10 12 14 16
Ky il 015 0323 015 029% 031 (32 033 0335 037

—r
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Once X, and X, are evaluated from Equations (3.66) and (3.67) then
Equations (3.69) to (3.77) are used to find M,, M; and M;. They are
Eiven as:

My = mpg + Xympy + Xemp, (3.78)
M; =mgn+ Xomg + Xemge (3.79)
Assuming that the helicoidal cantilever is fixed at the bottom and free
at the top, Scordelis (1960a, b} developed the following expression for
the displacements at the top:
R tanasec a
El
R*secasina _,
TE coso
~ [2¢cos b + (¢* — 2) sin$ — D tanaesin a (3.80)
R*sina
GJy

brp = sin¢-—¢m5¢-—%ﬂi|

[{3 — %) sing — Ideos b

&

3, Heosdp
Ty tgunZe-

4

E
El, (3.81)

Erﬂl =

Riseca & ind 4
£n, |2 tne
R —
-:nmE
Gl
R tant aseca 4 trcos 2
El “
R seca
El

sin Erb] Risinfaseca—
n +

fxx =

— 1 —
[Hm&zu—kaﬂsinzu

“+ [F + ¢{:u52¢:| tanln::sinlu]

(3.82)

4

— 1= |=. i oos 2
IHHED+|:FsmI¢r+ 2 :”

R? sec asin?

G

Rseca— Rsecasindo— Rceoso—
Jor= ET o+ EL H+ G, H (3.8%)

Rlsecatanoa—
= = -—-—D
.rr'.t ..rJ:'I" .E.Fr

Rlsinasecar— — .
+ T[Hcmu+ Dtanusmu]
¥

2 &
R ;}:’ = [—F + %{ﬁ}] (3.84)
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where

D = (sin2¢ — 24 cos 2¢)

sin Edl]

=_[e . B
.':"—[1 sind + Goos d 1

i 4 g
— b sinlZd
G—E-i' 3
— §  sin2d
H_E 4

Scordelis (1960a, b) gives results in terms of X,/R%, X, /R, M, /R,
M,/R®, and M,/R* for various values of & ranging from 0 deg to
300 deg. Based on these equations, the author extended the results up
to 360 deg, They are given in Figures 3,24 to 3.28 for various values of
B/D and oo, The load is assumed to be 1 kN/m. When the total load
due to dead and imposed loads is known, the values from these figures
are modified by multiplying respective values such as X, /R etc, by

that load.
0.6 I
4 - _
¢ P Iy el
0.2 = =4
- h\
U — H"'i. \‘
B~ AN
-2 ‘
b 5
1II
%
{6
&
S
—}. 2 ‘\
—emes m=10° \
o= 30"
~1 .60 E

=2.0
Figure 1,25 Values of E )
maximure bending 23 b=

mionzenl. Ay for girders of .
varkous harkzongal angles &, o3 L] 150 210 27 300 333 360
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Max M, (R
+d

0

a0 &0 120 180 40 00 )

Figure 3.26. Values of L&
maximum Bending mozent A

M. 1.2 ’H

0.8

04

0.4

12

X,IR

1.6

2.0

28

e
=

32
]

L 5 1

36 L ‘J— L

*
L

L
E| 1 i

T
-
=
-

4.0

B R
P
L+

Figure 3.27. Horzonts]
angle values of redundant 50
Xy. 0 30 &b %0 120 150 80 210 240 270 300 330 360
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§

A

1

2 ﬂr- 16

= —— \]\l

o= ¥

[ e —

i}

ELUR 80 120 15¢ 180 210 240 4T MG 330 By

Figure 3.28. Horimolal
anghe values of maximuom
bending moment &,

EXAMFLE 3.10
Analyse the helleal sialrease using the fexibdliny method and the following data:

BiDy =168
G/E w7
@ =30
w = unilorm load = 5.205 KN/ m

& =01mw N

SOLUTION
Flexibility of analysing helical slaircese

The above values are based on the load with & magrinede of 1 kM/m. For a comman
dead and imposed load of 5205 kN/m the above values in the 1able in breckets e
arrived of using the above fgures maltiplied by 3,205 EN/m

For example, when B =23 moand § 5 = 90 and w = 5.205 kN/m

My R = D781 M, = (25)" » 0.76] = 485125 kN/m
M R = 6767 M, =297 = 6.767 = 4229.375 kN/m
M /RT =0052 M, = (25 x 0052 = 325 kN/m

{

b 30° e | 20P 150 180F 2107 240 70
X, R 0B L0 LD 1.17 1.56 .40 I.18 &

i4,06) (5,208} {5205 (60185} (512} (7.28T) [6.142) {3.12%)
X B* 04 i =007 =0,20 —0.45 —0ER —1.30 —1 .65

£0,208) {0 (—0365)  (—1041}  (—2343)  (—4580) (=676T)  (BSHE)
M. /R 0 015 0s 0,58 1,50 145 3,10 15

¥} [L -1 ] {2600 4. 580 (7810 (T2 753 {16, 1340} NEXHEY]
M /R () 1.30 1.4 1.60 1.5 1,55 1.90 1.7

0 (6.76T) (7.287) (8,328} (9,369 (9,520} {9,890 (8 849)
M:/RT 0 i 0,01 0126 (.50 140 .65 3ED

(i {0052

(0,052} i1.354) {2.6003) (7.26T) {68973 i19.78)
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55
5
L
=
=5
g rf';.
L
i
i
1 &
S, 6./t =
ol
, , ——--- o=0®
[ == a=l0" T
2 o =30°
0 1 | ‘
60 90 120 150 180 210 240 270 300 330 360
Figure 3.78. M/ R* 3.5 MEMBRANE FLATE/SHELL ANALYSIS
VErSUSE o,

3.5.1 Inrroducrion

Helical stairs can be treated as a plate or shell and hence a membrane
theory can be considered for computing forces. A simple method would
be to assume that they are axisymmetric. A polar co-ordinate system is
then adopted. Figure 3.30(a) shows a helical staircase and Figure 3.30(b)
shows the wsual forces on interior and exterior surfaces.

1.5.2 Notation for the analysis

ry = radius to the outside of the stairs

Fe = pry = radius to the inside of the stairs
B = pr; = width of the stairs

E =r/ry; = parameter

H = overall height

Parameters, & = H/2nre, n = JE_: + &2

¥m = radius to the interior = r (1 4+ p)/2

Ng, N and Npg = forces as shown on surfaces

w, v, w = displacements in ¢, r and normal directions
gt = load per unit area
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— N —— —

D,

B o e S ) Helical stair plan and elevation b) Forces on helical stairs

3.5.3 Basic analvsis

The equilibrium equations are summarised for an element of the stair

surfaces:
EE -|l|"rr¢| .
o 5) =0
BN, 42
Eﬂ;‘:’:_'_“ {P‘;;E ) —0
. (3.85)
#(nNy) o K.
P + 3% —=Ng=0

The forces acting on the stair are written as:

vo- EDr(Lin £ )

*T T \nae o2
Ea
Ny = —— (3.86)
ry 9
EDyg fdu  E | 8 )
Nys = S a4 -—_Z
* = o, (az . e T

where E is the Young's modulus and Dy is the stair thickness.



Membrane plare/shell analysis 141

The following equations for displacements can then easily be derived:

2
- oy = 2 _ 2 l_
w= HEMm[tf{m a (E 1)]

2
g
2455 kcdmf{'ﬂ

fi'ﬂ?",- -
T OEE D L2 87
S6ED k2" G.5h

F

2 8 P
* {21] fFiE) + §n1|:3 - 2E - EU + 28}

[k F&)+ 5ok +an (Hi—:m]

where the fonction F{E) and ¢ are defined as:

. JI+ R
FlE) =4—k - %Ja TR+ %[Ipil B - #] jp LEVI+HE

E4+ 1
B2(1 + 2p)

'“,T]:. - -El{ﬁ +3p + 2p%) {3.58)
I+ 2p

p* 4ot odmat
56 7

where In = natural log,
Using Eq. (3.44), the forces are writtén as:

' |
Ny = qlf-"i*l'l(E I)

=l

_ _GorsThr o
Ne = mﬂ[e 2t + p(l + B)] (3.89)
TN

For € = 1, 4 and v are zero and for § = p, the new values of N, and
Ny from Eq. (3.89) are calculated. Putting Eq. (3.89) into Eg. (3.85),
then expression for “gr’ is derived.

go_| 3 2 ]
= =—=F|—=—=== 1 +2 3.90
w=qr E[E’ : E"{ B) (3.90)

N (total) considering top and bottom:

3
Ny = —'II“;: 2’ (3.91)
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S — S —

The horizontal and vertical components of Ny are:
qors _

Now = “gp-coll —E) (3.92)
gors_ i 1
Nay = —= -] 3.93
v =" ﬂb(t ) (3.93)
and their respective total values are given below:
2
qoFy —
Nghtotal = IIE Ebph” {3.94)
ﬂz
rey=——7—"s {3.95)
2l In- -
(n5-2)
' |
Novioa = %mﬂ(ln; - ﬁ) (3.96)

Helical stairs having sectors subtended 2dy in plan.
For a sector of 24y in plan (see Fig. 3.30) of the helical stairs, Equa-
tions (3.89) and (3.91) are modified.

o

6
N, = ‘:"EE% (6%~ 25+ p(1 +§)] (3.97)
Nyg = “3";:3[3 - 2% - SU + Elﬁ:l]

EXAMPLE 3.11

Using the following data, caleulate the geomeirical parameters and the forces in a
belical staircase made of reinforced concrete,
The helical satrease plan is shown in Figure 331,

Data
H=3m
4] :l:l-.r

hy = height of the step = 0.1765
G =going=03m

General
rp=3m B=l15m r=15m
Foy = 225 go = 9.49 KN/m? (vertical load)
€ = |89 exterior E = 56,8 inlerior

(respective factors times desd + imposad)
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Figure 3.31. Helical stairs
in plan with votal
suspended angle Jdy,

Plate/shell analysis using membrane theory for a helical stuircase.
Parameters:
&y = toaal angle subtended in plan

by = 65°
H-%iﬂp-%ni-&im

. 10
fwmllmmﬂ-mlu.ﬂ
coda = (L85
Cutside of the siair
—F—r:l :u.£:: ::L—
p=T=03 B=s=05 k=g =0M
n= i+ = i 40194
Adopeing Eg. (3.97)

Ny = 7.15gpr, 4,/ 5 +mu(% - I) i

b
Ny = —3.58qpr, (&% — 26 +0.75)
r rm Range 0.5 = E = 1.0}
1
Hp..=—|.|'9'9@nrf(3-lt-i1)
for £ = p= 0.5
Mg = =4 Vgorsd  where @ is o particular value of gy
N=0
MNepg =10
3
#Ltli=1~05w(ﬁ"ﬂ—_5--‘—]={%=“
for E =078
My = LEBgorat
Hf=‘ﬂ.n!ﬂ]fj'¢

Mg = HLT25qpr,
gri(B) = 1.14434y
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for onside #; = 3.0m
o = 9.49 kN/m?
= g = 65"

bor € = 1.0
Ng = (Dilggri gl =
Ne = ={LEgor &
Nep = +0060g0r,
g (E) = (L5254

These results are left in fod and go. All other values can be intérpoloted, The plate
bending, if any, can be compubed From a general equation,

@B @B w495

EF = = = 04T kN mim

Rp

N,m - —z,'i.S kM H‘rm = BT.0 kN
NII'.EIl = ﬂl:l k:q H.‘M“ﬂ = B‘l‘ﬂ k:"
For the inside of the stair

re A0
m=013m, s~L30m redlm pe—=—mali
Fi 1.5
B 2
fa—m—] k=06 0=t +0775 =368
Fy
— 1 .
Ny = 10.T6gar, by EX + n.m( - |)
Ny = 538, —14’_:!’ - )
a7
vE 0773 Range 1 £ 52

New =1 'J"!J'mr,(Er—Ii. + Eff)

{-".U=J.|5&m(£!— E—I.!--Fs-) ]

E=1

Ny =0

Ne = 4.0 = (qord)

Npg = —B.95gyr

ikl = —4.T9qn
=2

Ny = —11.B5ggr,d

N, =0

Ny =

gt = 1.0y




Membrane plate/shell analysis 145

354 Helical stairs with torsion included nsing the flexibility method

of analvsis

Table 3.12 gives a general analysis of an element of the helical staircase
under bending, shear and torsion. This analysis acts as the basis of the

proposed flexibility method of analysis.
The general [ fi;l; including torsion is written as:

P Fi i BT § B i U
[-ﬁj]E:Z[ YR + if -L|'+ LLARLF) +Ib‘,'l' ¥ & ¥r
5

ElL, El; L GA

Fa i

In pure bending, the first three terms of Eqg. (3.98) apply
MyiMy) Mgt = Mg

El, El Gl
(Bokg =3 | + ds

5 Uyi Uy UgiVsp  MiRQ
2t L R A S
oA T'™Tga T EA

d
ds = ﬂ (reference Table 3.13)
D0S O

{3.93)

3.949)

(3.100)

{3,101}

Where Iy, I;, I; are along respective axes and where there are x param-

eters for shear such as a shape factor:

10
Gl =2E—2*%_
T Ty +1x
cosal [
[fijl = 21 fils

For a pure bending case Eq. (3.103) can be expressed as:

i 1 I
hij= Z [m_ﬂm” + imtimﬂ - az-(l + T':)m,im,j:| dep
When a redundant X; = 0, only loading exists
myg = fld)

1]
g = sinu|:f'{¢l} + rlfq;_ d¢-]
L]

i
My = —mal:f’{¢}+rzfﬂ, :I¢:|
o

(3.102)

{3.103)

(3.104)

{3.105)
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my =0, Miyg = Sin g
my =1, M4 = Si0ocosd
myp =0, Mgy = = C0% A COs &
iy =0, mys = lanadsin g
mf_1=cu«=1u. Mg = —(sina lanad cos o (3.106)
My = 5iN 0 COS @, + cosasind
my3 = tanad cos ¢, mips = sinoid cosd — sin )
M1 = —(sina tan ad sind Myg = COS &
= 0G0 COos Mg = — &IN 0SNG

mypy = sina{dsing + cosd), Mg = cosasing

Table 3.12. Basie analysis for helical stairs.

Figure (2) shows un elevation and a plan for a helical staircase with 3 sectoral plan,
Figure (b) gives the posiion of forces on an element. This s modified by including load w and other compoents (n
Figure b). 2 and Figure b), 1.

Figure (h), Forces on the siair element.
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Tabde 3012 {goni.)
General equations
Wioamems, shears and axial Joods
= RCOS 3 — s SI0 o= P Eima +qu|3
Fy @ By, iy = iy
Fe = i sIEl. OO, ty = Ve COE& = i 50
— S — (A)
AT MLy IR = B LN, My = o N4 =+ my CiE &
Wy = iy, m...:ﬁ..
M = g S o CUs e, e = COS 0 = @ sing
Eguilibriam eguations
The following equations can easily be denived:
Fiarces:
0 radial
e H = Fudi
iR (B}
— — T, =1 tangemial
i
L I
r4 ===1( verica
4. 3%
= o  dm .
pomente: F¥. — Flanel = F, = —L radial
: [
_ dm .
GLIe 4 rlanad, = rr_¢. + My = 1 tangential (]
A, )
FBy + — =1 wertical
fitn]
The values T i and iw can now be compubed using the following equations derlved from Eguations (B) amd ().
Mote: x, & redundam values = X jmrodoced in the flexdbility analysis
_ 1
Uy = —{ag (05§ 4 oy min Sl
L
(=]
I
.= I""rqlr_ dip = = sin ey
r
[t}
i lli ing -+ i)
= L4 &I0 Ly LLks
~xs ' (i
W= g S0 Ay ook 4 L vy oos g — xsfsingd + Fx)
- sl - xrh — g sl = oy oiad
(=]
iy = —r ’fw dip — xg 008 + x5 snd — sinexy ~ (@) 4 analxydsind + x5dcosd)
il
The value (g when determined from differentiation is given as
Flibt & Fid) = qurie + ¢l (E)
When & = (in Eg, (10 the forees end moenents in the helicsl staincase can be writien s
_ L _
Tl = =4, o= P+ xg
r
I -
Tl = ——sinavy, #00) = cos ol + 120 4 & {F
F
I F
Tl = ——xn. il = — g + shnary — 03
r

where o's ore indelerminscies gs X in the man Bexibilily analysis.
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Table 3,12 {coat ),

— PR P — - — -

Substtuting Bg. (A) into Eg. (D), the Tollowing values are obiamed:

1
(THE ;(.:51!05¢ + xyEind)

I 1 .
= —F Enhuj'qnd:p— — SIEC08 ax) — — SAEixy SN G — 53 008 )
F F
o

n = —.rsinuft”_ di — Iil—_:|.ir.|1|:r_':'| + %mu:q 50§ — Iy CO% )
o
my = Sid) + tan i ryd oo g — xyh Eing) + 1 40 + 15008 G
&
my = 5i|1-:||t_f"|f¢|] + rljrnﬂd-ﬁ + X4 CO%  — I SO — l:nutx3¢l:h1lj-+.r_1|j-|:nt¢]j|
a

— cos alzs sind = Ty cok ) + ¥ + X008 @

]
My = —:usu[_lfrlftb] +r1qud¢ — &in (1 + 14 rn:q:—.tb:.irlq:]
L1]

+ sinialryd sn § 4 rod ook b+ xn 008 d — x4 mind]
When one edge is fixed and the other free a5 shown in Figure (c} Bg. (F) can be written as:

x) =.:-:=.I::|.=_:5=I:I

xy = =f'{M
xg = = ()
gL = Bim +qel=w
2rd=v ?
r,=r+e=3r&—_rll=l'+m
Sid) =—grike and f'ig) =0
ke =14 =
;

Using Equations {Hj 10 (I} and substipating Bg. (G) into (T}, the follvaing equations are finally denived:
vy =10
by = —gprcosaln)
no= —gprslnaidh)

my = —~gproke(l = cos )

my s gp e sinald — ke sind)

miy = gy cosaif — ke sin g
Lingar relation

p=2R

qu(d) =qro+ It o k) 4 kyb
qLn

Fig) = =ky + kadirke
Flih = —ksrthe

)

(H)

i
)

K}

(K1)

Lt
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Table 3.12 {cont.).
Equation (L} is substituted into Eq. (G) for the additional values.

The values of various moments can be computed between —dy to
+g. Various flexibility coefficients are evaluated using Table 3.13.
fir =24y
fiz =2 cos” ady
fi3 = 2" cos a sin i + sin o tan a(dy cos dg — sin dg) ] (3.107)
fla= zﬂ’ 5in @ Sin diy
fis= fis=0

faz = cos?a(2F — 1 + 384y
fa3 = cosa[(2F — 1 + 28")(2sin dg — g cos dy) + 'y cos by
fag = —sinacos® a(l — B°) sindy

fis=0= f
fia = miu[%ﬂ_?:]*a+%F¢%ﬂn2%
+${2—3f—3ﬂl{ﬂ“2¢n—3¢umz¢ﬂ:‘]
+11('2F— 14 3p') (26 + sin 24p)

fis=fis=0
fas = fas =0

fos = %tlnm[?{ﬂnllh; — 24bg cos 2ibg)
=201 - F — B)(20 + sin24) |
faa=(2=F)gy - %Fsinlqtuﬂ
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R

fas = tan? ﬂ[% (2= Fiy— %fﬂi‘%sin 2y
- &{2 — 3F — 28")(sin 24y — 24 cos E.:t:,:,)]
+ %[1? — 1+ 38'3( 24y — sin 2dg)
foo = (2— FYép + %?sin 24y

] =l ¥ :
fs6 = ~1 lﬂ-ﬂt![lﬂ — F — [ W2y — sin 2dg)

+ Fisin 24y — 2dg cos 2ép) |

where
i I_'I-'
=1

Tabile 3.13 Tabulated valoes of ¢'s versus 6's versus M's.

By = () By m 13 ¥ o=
=y =250 0,200 (500 Mg e
{=10.5) (—8.76) 21.6)
~#p/2 045 [L050 0.120
{1.944) (216 (5.184)
] ~(110 -0,158 -{.230
{—4.732) {—G.53) {=4.24)
g2 0045 0.050 0,100
(1.944) (2.16) 432
+iy —0.30 —(,20 LT
{—12.96) (—8.76) (0
by 1200 —1.250 —1.300 Mty
(=5.184) (~54) {=56.16)
—gg/2 —1.250 —1,250 -1, 300
{—44) (—54) (56.18)
0 0,000 0,000 0,000
(0 () ()
+a/2 1.250 1.250 1400
(54} (54) (60 48)
+iby 1200 1.250 1400
(57.84) 54 (60.48)
—tyg —0.055 —012% —0.200 M, fwer?)
[—2.376) {—34) {—8.76)
—tyi2 0.035 =0.010 0,025
{~1.512) {=0.432) (1.08)
o 0,008 0.000 0,000
1)) {0y ({1}
+dg2 8008 0.010 ~0.025
(1.512) (0.432) (= 1.08)
+4y 0055 0.12% 01, 180
(—2376) (34} (1.78)

wrt =432 kNm.
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¥ = (1 - %cnrﬁu)ﬂ -B) (3.108)
Similarly
+y 1
djp = E |tm:,.d.'m v + P im0+ E“ + ﬁl}ﬂ!u'lﬂr::.] de (3. 104)
"tl.-.l

Hence six equations are written and solved

fiixy + fizxz 4+ flgng +8p=0
faxy + fraxa + - fagxg + b =10

(3110
farx1 + faaxz + - foovo + o0 =0
The symmetric and un-symmetric matrices are wrillen ms:
sYmmetric
M fiz fis e = B1o
S fr o S| e ) bW
fu fa fun fu| ] B30
fa fa fa fa X4 Ban
(3010
Un-syrmmetric
fos  fap | fas | _ _ ) B0
fes Jes || %6 By
Since {—=d) as functions
load w = g = Blgg + gy} = constant (3.112)
f() = —qrrike and f'(¢) =0
where
£ B!
12t
€
ﬁ:e:(]+—) (3,113
F
Mg = —:}erke (a}
Mgy = grrt sinald) (b}
My = —gpr’ cosa(d) (ch3.114)
b =8 =dyp =8y =10 (d)

Bsp = eqrllanm[{ﬁ +ke —3F — p')(sindy — pycosdyg) (e
— (1 = F)dyj sin
Beo = 2g1r-[(1 = F)égcos by — (1 + ke — F) sindyg] i)
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Figure 3.32. Demonsirstion
of helical stairs

of moments, shear and
axlal effiects.

Figure 333, A helical
stpircase in plan,

If

v._ % ¢ _ X

Ag = N =
qur® " g’

then moments are written as: shears and axial thursis due to vertical
loads as

vy = gorXscos ¢ (a)

v = _q;_r[:;-mmb+fy:inugin¢} (b)

n = —qpr(sinad — Xscosasing) (c)

my = —gpr* (ke + Xstana(psind) — Xgcos ) (d)

m; = —qpre [{fs cosa + Xgsina) sin ¢ — sinad (3.115)
+ X sinatan a{dcos {b}] (e)

iy = —Qer[ﬁj sina — X g coS a) sin § + cos agd

— X5 sina($cos ¢=‘.l] ()

These moments, shear and axial effects are also shown in Figure 3,32,
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EXAMPLE 1.12

A hefical stairs with 2407 secior in plan is shown in Figure 3.33. Using the following

paramebers, determine the shears and axial load for the stals:

IH, =315m
RC slab thickness = Dy = 150 mm
M = 21
Slab widsh =l lS5m
hy = 0.1667 m
i =r=135m
o - 0292 m
e =2MMm
2, = 240"
1agy = charscteristic imposed load = 7.80 kN/m?
L.6g: = characteristic imposed load = 5,00 kN/m®
qL = 1280 kN/m?
tir = Bgp
qL =15 x 1280 = 19.2 kN/m*
SOLUTION

A helical stair with 240°: ssctor in plan
Parsmeters:

r ] 2
() - (22) <on
[ B 1.50

o™
&
I
]

cos o = {LE74
tana = {0.557

Fe= [1 - %[D.:HT#]EU 0= n.uu] = (L6122
2
ke = %ﬁ- = 1.083
flexibility coefficients:
fas = 19866 + 204126,
fi5 = —{D.6368 — 1.01038, )
fea = 2.6420 4 0.58,
gy = (31258 + 218826, Jgr r*
ban = —{3.3606 — 1083y r”

for gret = 1

G184 + 1142006,
¥s= +

T 48431 + 7.67296,
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— 4 6R5T 4 6.47280,

Xg= o F
"7 4431 = 767296,
Ly=35m, 8,=6

i |.h-':'|'|

| n—(“‘ Ly 1
“\EL TR

substiuring into Xs and Xy equations

| — —
fory =3 Ns=—1341 =002
ford, =0 Hi=—1261 ¥;=00968
for i, = o0 Ks=—1.490 Xg =084

fof vartpus values ol O agaimst the values of II_I =10 3l o, the partial factor for
My Turt i, M e and M Oer?) can be evaluated casily wsing whe basic theory

desonbed carhier.

Similarly the values of ¥, /(wed, Vi/lmrh Npflwe) can be determined asd they

arg given in Table 3.04.

For example, the valpe for wr = 192 = 1.5 = 285 kN and wrt = 4.2 =1l j:: =
43.2 kN, The values in the above bles are modified and ae wriben in brackens.
Bending moments and skear forces and jxiad thnsts are drawn for 2 = 230°, They
will show where and how moch reinforcement is regokred.

Table 3.14. Numertcal valoes of ¥, /wr Tor vartous d's.

i

{67l
{19.3)
| i
[36.96G)
EAREE]
{5855

2 ] i 2 +40,
=671 =1.344 =067 LTl ¥, e = vailus
[ =101y =38 TTH {193 (193 o = 288 kN
03510 0 —1.351 — 12656 V. fwr = values
{ L 12} [} (=112 (=340 wr = 288 kN
1.524 ] = 1,524 =2033 MNiwr = values
(38,55

[EXR 1] LA} {—d3. 5]

3.5.5 Helical srairs with a horseshoe shape in plan

wer e THE kN

A typical helical starcase hos been analysed with a sectoral shape in
plan. This work is extended by exiending the edges by an inclined length
L to form a horseshoe which is shown in Figure 3.34. All symbaols are

consistent with the previous analyses.
It is assumed that one edge at the support is fixed.

vy =0
Ve = =& F COS Wi
My = —gr SN

My = —qu'z sinkell — cosd)

o = —qr: sina(d — ke sind)

mn = —qre cos ald — ke sin )

(a)
(b}
(<)
(dy (3.116)

el
(f)
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a} Elevation

Figure 3 34, A horseshoe

iype helical stair.

Equation (G} in Table 3.12 is invoked when X5 =1 and Xg = |

Xg=1

|
Uys = —COS
r
I . .
U4 = —=8inasind
r

ns = ;—:ususind}

myg = —an ad sin

wips = —(cososin g + tan o sin ad cos ¢)
mys = —sinalsing — doosd)

Xe=1

Uye = U =ng =0
Hiyp = COS

M o5 = — SinN G sin g
Mg = COS 5N d

(a)
(b)

(c) (3.116a)

(d)
(e)
()

fa)
(b)
{c) (3.116b)
(d)

Where the value of the load qL 15 included for upper and lower extended

posts of length L of the horseshoe and ¢ = &y

Py = D
v = q:[qu cos ady + g cnsu[x}]
ng = +qersinaldg) + g; sinalx)

myp = —qui [kf{l — o8 dig) + %:] - qi%

man = :l:.q';,r3 sinafdy — ke sindgyg)
M = F41, r! cos ]y — ke sindag)

{a)
{b)
{c)

(d) (3.117)

(e}
if)
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Xs=1

U= émsd:n (a)

Ve = =F:75inn:tsin & (b}

ns =i% CO% o 8N dyy (c)

mys = — tan ady sin gy — rlsinu sin §gix) (d) (3.118)

_ sin® o cos gy

M5 _q:|:¢mu51n¢g+—mm:|:ﬂmd:ﬂ+ rcmu{x}] {e)

mys = Fsinalsindy — by cos dy) (f)
Xeg=1

Vys = Vps = Rg =0 {a)

i g = COS (b}

Mg = F sin o sin dy (e} (3.118a)
mpg = = cos a sin dy (d)

Again writing the generalised equations for moments where the extended
parts of length “L° are incloded

o Mlyiftyy — Wgifftz; MM i1
fu—f[ ET, + EL + G, ]dé' (3.119)

For the two limitsof § =0 todgand x =110 L

o
! 1 !
bij = f I:myiﬂh-j + f—"'mn-mu- + E(] + r—”)m:;m,j] dé {3.1200
z z

L
I 1 ! dx
+ f [m,,-m”+f—’m;;m”+i(1+r—3’)m,,m,j]7 (3.121)
—p Z T
where
I = 2EIyilz
YT+ 1)

All other coefficients can be determined easily using a normal procedure.
The complicated ones such as fss, fee, fas, B0, Sso need to be evaluated.
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It is important to note that as wsual = [, /I, and p= L/r:

1+3
Jss =ﬂ?tﬂn1&+TﬁS1ﬂ2ﬂmﬂ§+ﬂ3—3ﬂs + ag)

e
+ ptan® @ sin” %[%{% +p)+ % cos” l:[]
+ E[msl oy + 4::5i'j'.sin2 ) + ag sin® @ tan® o
+ ol cos® o sin? by + sin” @ tan® ul{q:ﬁ + sin gy oS By} )

+ p? cos dy( sin dy + tan” ady cos dg))

ECIEE
+ ;'}K;T] (3.122)

1
Jsg = —astanoe — P sin 2o pas sindp 4 a3 — as)

p . p
— 3 tana sin Etlln(d:u + 3 :mu)

+ﬂ3inr.!|:(c13 + tan? {15 COS O + 0 C0S o SIn dy

, 2 P COS gy
» (smt.,:,+m.n @ty 008 dp) + m)} (3.122a)

|
fjﬁ=ﬂn+—-§—ﬂ¢i}$1u[ﬂj+ psin® ) + poos” dyg

+B Sinl{!{ﬂg + psin® o) {3.122h)

kelas — ag) tano 4+ pz EiM o 8in %[k?f:' -+ __._w:|

80 =qLr’ | -+ ptanadysinggls' + 5] r

1+p
4

- quz 8in u[ cos ey — kedas) + sina tan alag — keas)

+=

sinﬁﬂ[az — dg + pﬂ:.r“ + kelag — .:.rj}]

+ ps'l| cosasind +sin3a cos
s 0 :mu% 0

4 Beos ‘t’“)] (3.123)

2oosa
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| 3
b = —Q'Lf'glkfﬂ| + :ﬁcm*u[m — keas + psin dln{-i"]']

+ pcos dy[ke(1 — cos &) + .:l"]]

- ﬁq.rl sin” u[ng = keas 4 psin -:IJD[:"}] (3.124)
where,
l
a) = sinéy — i(¢u+ﬁin:bﬂm.-:¢,_,] {a)
a3 = sindy — iy C0s gy {b)
|
ay = iy — sin dy cos gy (c)
| .
(4 = ;{11:,3. + sin dip 08 gy ) {d)
1 3 [ .
s = ;N’o 8in” ) — _;_{q:u — &My CO8 dig ) (el
ag = B sindg — 2(sin by — G cos dy) ()
a7 = % - %ﬁslnd:ucm:bu

1 2 1 3 | _
+ ;(d:-ﬂxin' g + 3 (:bﬂmn‘ ity — Ewu - mn¢um5¢njl) (g}

% , 3. 1 .2
ag = r3 + 5 Sin dig coS gy — E{itrﬂ.s:n )

|
~ 3 {0 = sin g cos dy) (h)
s =1 —cosdy (i)
s = gy — kesindy ()
F]“ = !tlni—,: + % 3]
! PPt
W=tz + 7 (1)

The values of coefficients a; to @g have been {other valoes can be in-
terpolated) tabulated below in Table 3.15 after solving various integrals,
for various values of §,.

Similarly for the helical and horseshoe stairs, the following values are
derived.

In the lower and upper lengths L of the horseshoe
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o ay @y a3 dg a3 L] &y ]

a ] 0 i) L] {i] a (1] i)

30 0.0217 004656 00453 04783 00428 (.0439 0073 (LG
a5 00644 01517 01427 Dt 27 QL1250 0.1328 00513 (1100
ol 01259 0.3424 03071 07401 0392 0, 2649 01932 . 1857
5 . 1 2064 06271 0.5205 L 034509 (4018 (L5055 240
a0 02146 1.0000 TR 07854 03927 04874 10357 2530
105 017486 b2 10413 07913 03343 03635 P, 02718
120 0.0353 1.9132 1.2637 08307 L1536 =0.0277 L7355 HRRE)
135 =0.2210 23732 1.428] 09281 —0. 1250 —(L N8 34430 T
150 =053 L.T673 15255 [ 0925 =0.4355 =L 177 4.03%0 1.59423

Plaze 3.1. Helical stafrcase
i concrete with
wood/stoel balostrade
{with compliments from
London Hilion Public
Relations Department).

Helical part
vy =grrXscosd

Ve = —q;,r{ cos a(d) + X5 sin asin ¢-]
n= —q;r[ sinad — X r:musina]

my = —qrr-[ke(l — cos ¢

+ Xstanadsind — Xgcos ]

m; = gpr®[ sina(¢ — ke sin )

— X cosa(sin & + tan” ad cos &)

— X sina sin 4}]

m; = -—q;_rz[f:muit - ke sind)

+ Xssina(sing — dcos &)
—fﬁmusinqtn]

(a)
(b)

(c

)
(3.125)

(d)
(e)

(f)
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For the lengths of the length L of the horseshoe

vy = gLrX s c0s dy (a)
vy ==Fqu[cmu{¢-ﬂ+ﬁ}+f5 —sinusmq:.u] (h)
" =q:q1,r[sinu{¢ﬂ.+ﬁj —Tg —msusinnt:ﬂ] (cl

{ {3.126)
My = —q‘er[kl‘.‘[]. — 0% dy) + dgf) + Emi

+ Xstano sin dy{dg + Hcosa) — X mad:ﬂ] (d)
my = -|_-qu1 [ sin a{dy — ke sindg) — X4 sina sin by

- X5 cnm( sin $p + tan” adg cos dyg

+ = "’“ﬁ)] (€)

costa
my = :qu;,rz[ cos g — ke sin dg)
+ X5 sina(sindg — dq cos dy)
— X cosasin "1’13] i)

Note that for X = Em,ﬂ':;r;_rz ete. and M = x /L

X = bao/qir®
For the interaction of the straight and curved parts, the modified values
of f* are written as:
fs5 = fas + 20, tan” o sin® dg{dy + pcos )’
+ 28 (sin ¢y + pcos 11:.:1.]'1
+ 26, tan o cos® dy(dg + p)°
fog = fseby tana sin 2dg(dy + poosa)
+ 8y tana sin 2d5(dg + p)
fo = foe + 28, cos” by + 20, sin” ¢
B3y = Bso + 28yqrr” tana sin dgldg + peosu)

F
y [h!l’l —m¢n1+p¢ﬂ+%]

— 26, q.r” tan o cos dgldg + p) (g — ke sindy)
bgn = bgo — EE,-’,rer cos i
2
W |:|t.'fl[1 — cosgy) + pdyg + %}

— 20,gpr sindgldy — ke sin dp) (3.127)
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for the purpose of tabulation

EH — i’}:r

s (3.127a)
Eil — ﬁﬂz

qLr

EXAMPLE 3.13: Analysiz of a horseshoe helical siairoase
A helical type borseshoe staincase is shown in Figure 3,35,

Using the following data, analyse this staircase for displacemenis, redundants, shear,
moments and axial thruse.

Diaiz
Hy =425 m
In =26, n = 13 ope side of the horseshoe
k) =0.1635

G w03 m, g o= 572 kN/m®
B o= 140 m, g5 = 3125 kN/m?

n =05m

r =12m

by = 105°

Ly =G =78m

¢ =812

L = @ w17 m

Dy = siadr slab thickness 0.16 m or 160 mm

SOLUTION

Li=2mG=2%x03=78m

woes Ldgs + 169 = 1.4« 572+ 16 » 3125 = 13 kN/m?
Lypp = Sector AC=15x03=435

From sector of circle with 2107 angle 4.45 (average Lipo = 4.4)

g = BE=44
L=L L:.n;r:'.l's =17m

Figure 3.35. A hélical tvpe
horseshoe stoircase.
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& ﬂz
be=l+4+-=14+— =1.1134
e +.I" +|1.|'1

=5 L
-

ay =00, gy = 1400, &= L1 a4 =03912
ag =0h3M3. a5 = 03635, o= L7800 ay =02718
Sis =3486, fop=—0279, fru=1800 &gp= ﬁ.ﬂ-‘?-q.«_.rz

Bep = (AT
Looking at the moment fior a single span staircase (M)

Jop = 3486 + 5.246(6,), fi = —0.279 + DB3R{H )
S = LB0G 5 013408, ), Ny = 6808 + 16.203(8, bqp
Bl = (404 4 258%(8, qrr
far gors = 1
¥, . 12591 - 306188, T = ~3,313 — 9.8848,
6.2ZE + 1425 6218 + LﬂAL'd.I-}
for

By=0, Xq=-—2022 and Kj=—053%
Fi=—24% and Xy=-0723

1
z
By =00, Ksg=-=2937 and X;=—0948

3.6 STIFFNESS METHOD

In this method the unknown involved is the displacement of the joints of
a particular staircase. There are essentially two principal ways in which
the equations of equilibrium, kinetmatics and elasticity can be combined
to lead to a set of equations in displacements. The two approaches are:
{a) the basic stiffness method by involving basic stiffness matrices of
members and (b} the direct stiffness method by invelving the general
stiffness of miembers,

The common objective is finally to obtain the following set of equa-
Hons:

(P} = [K]{b} (3.128)

where {P} are joint forces, {8} is the corresponding displacement and
[K] is the stiffness matrnix.
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Figune 3 36 Reference
coorfinale syslems,

3.6.1 Basic stiffness method

The Eq. (3.128) can be expressed as equations of eguilibrium in terms
of joint displacements.

P iu tu :13 il.n Ei
.::1 _ :El n kn ... ki :1 (3.129)
P'-n kr!l knl -En] cor kon b

The coefficients ky; etc are obtained in terms of the basic stiffness (K] of
members, The deformation of members is related to the displacement of
the joints of the staircase(s) members. Having solved for displacements,
it becomes easier to compute the intemal forces for each member of
component of the staircase.

Member deformation
The deformed shape of a member can be evaluated by (h) the beam
model

(i) In the beam model, the rigid body motion under consideration
(Fig. 3.35) involves a rotation v; — v/l and a translation &) and wa.
The member deformations are obtained by subtracting the rigid body
effects.

g — i
¢=='*"T>rssmbnd:.r

vy = v | displacernenis (3.130)

Chord rotation (
L

$y =8y —

axial elongation & = uz — i

(it} In the cantilever madel, the rigid body displacements of a staircase
member (Fig. 3.36) involves a translation wy, a3 and a rotation &;. The
deformation relative to end *1" being fixed can be expressed as:

v =1y = iry — LBy at end 2 in a tranverse direction (3.131)
=8 — 6
&= 31— U

These two models correspond exactly to the member forces which are
defined as a set of independent forces for a member. The cantilever model
is relatively casier. The beam displacements at end 2 can be obtained

a) Local system



164 Srructural anclysis of staircases: Modern methods

when the proportion of x of the beam is assumed to act as a rigid body.

de = du
dv = xdb = db = ddb (3.132)
Total deformation is obtained by summing over the entire beam.
L
e—fdu V= f.rdlEI b= fl:lEb {3.133)
i
L L
v x v x
h=-t=- fI ¢—I_f(1—f)dﬁ (3.134)
LI L]
~ = rotation at end | (3.134a)
¢ - = rotation at end 2 (3.134b)

Typical stiffness coefficients and standard cases are given in Table 3.16.

3.6.2 Direct stiffness method

The slope deflection equation is in fact a direct stiffness method. First
the general stiffness matrices of various members are expressed in global
coordinates. The equations of equilibrium are written between internal
member forces in global coordinates and joint loads. A typical example
is given explaining various principles. The general stiffness matrix can
be expressed in terms of loads and displacements as:

F] kin k2
kzl hz (3.135)

The k;; matrices U. j =1, 2y can be obtained in terms of kinematic
matrices of the member and the coordinate transformation matrix.

kij = T;EUT'T = .-"Jk.-‘l}
kij = AikAj
The general ‘k;;" matrix is given in Table 3.17.

(3.136)

3.6.3 Transformation technigue

End actions and end displacements are gencrally defined with respect
to the local axes of the element (E, n) in two dimensions or {E, n, £) in
three dimensions. If they are referred back to the global axes (x, ¥) or
{x, v, z) the relationship can easily be established between them and the
local axes. Assuming transformation is required for a two dimensional
case, in which Figure 3.36 shows axial forces P, shears ¥V and bending
moments M on referred global axes x, v then the local values P, V' and
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Table 316, Stilfoessy coefficients — standard cases

, : :
B
‘4_I_L¢ﬂ P, Pal - Pa'h Pa , Pa'h - Pab
i A AN

P o u
ht"ﬁ’: by 46
4 g & L
7 /-2 k=3 oy =S
k“:ﬁf k=125

L'
"" !
wil M, wl. M
L T T
b:|=l'? '
L. Ky
g .
1 1&;@
L 11 'E!I- L
| b= 3
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Table 317, &y milriges = plase frume member.

= E3)EF =kyx =(kee? + k33¥) — ks — kyhes —kgs

kac® 4 kas? (ks
(ks — k318 k1o 4 kgt kg | —{kg — kyhcE —{kyc® + kar) kac
=kas kye E| . bur —kaqe k3
—ikar? + kar’) — ks = k3des ky T (ks = kadex kgt
—{ky — kydes —{kyet + kest) —kge kg — ky)ex kact 4 ks —kye
=kaE =k k3 Kyt —kye k)

ky=dEN/L: ky = 2Ef/L:

ky = 12E17LY, k.-auui s = AESL & =co8 o ¥ = sin o

Mecan be related as:

P = pcost — vsinf {3.137)
M =m {3.138)
V = psind + vcos® (3.139)
In a mairix form

M 1

Fi=|0 cmﬂ —ﬂmFJ I } {3.140)

v 0 sin® cos®

Considering a typical j position in the frame (Fig. 3.36) of an element,
the following relationship can be established

Mal rio0 0 0 0 0 7(ma

f b 0 cos# —sinB O O 0 P

Vel |0 sin® cost 0 0 0 U
137, ("lo o o 1 o o mg [ G4

P, o 0 0 0 cosf —sind Pe

Vs 00 0 0 siné  cost 4 | wy
for the element ‘i
[Mc}, = [Tekiim. ) (3.142)
where

1 | [r] 0]
[1.] = [IDI if] ]‘_ (3.143)
Equation (3.145) is also the end transformation matriz
[Tel =1rhy (3.144)
The general displacement of the element is written as:
[Be)i = [Te]ilbe)s (3.145)

The inverse of the element transformation matrix is equal to the transpose
of the matrix

[Beki = [Tel” [Be], (3.146)
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3.6.5 Sriffness values and reactions

Prior to the evaluation of unit values-reactions, it is important to know
the values of direction cosines ¢ and s for this staircase,

L h
— i= —
fep2 2 fipd 1
Lz

Element 2c==—==1, =10
Lz

Various deformed diagrams for the reactions for various displacements
and rotations are shown in Figure 3.42 for restrained flights of staircases.

Element 1 ¢ =

3.6.6 The stiffness marrix

[kror]) = total stiffness matrix for element (1)
displacement at k-end  actions at j-end

kgr  kog koo : ko key  Kos (3.159)

displacement at j-end actions at k-end

Similarly the components of the transformed element stiffness matrix
can be identified as the following for the elements (2)

action at j-end

ki k=0 ki ki kis=0 ki
1] Ear o o ks 1]

throrla= | %13 0 kw o kg 0k (3.160)
kai 0 ks o ka 0 kag
0  ksg 0O 0 kss O
| ke 0 kes ke ] ke |
displacement j-¢nd displacement k-end

Tables 3.18 and 3.19 gives a complete picture of other types of deforma-
tion for the same restrained staircase while looking at appropriate unit
displacement and rotations against corresponding reactions, respectively.
The reactions can be summarised in Equations (3.161) and (3.162) while
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Table 3,18 Joint rotation and translation in X and ¥ direciions joinks 2-5,

a) A unil displacesnent at 2 (ranslation in X-direction) h) A unit displacesment al 4 (ralaticn of joint 3)

G
B, [
J k

k=0

) A ot displacement at 3 (iranslation in ¥-direction) d) A unit displacement at ¥ {iranslation of jolnt 3 in

X airection)
considering:
=1 2 -]
=1 =i}
kay =-E1]~ i’36=kﬁ3=k35

=1 22 -1 =2
k= k3 +k3), K3z = kg3 +ky

2 =
kgy = kyg = kyp, kg = kga = kyy

o (3.161)
kg =10, kag = kyy
—2 3
key = kg, ka5 = kag
- -2
kay = ksy. kee = kgg

=1
ks = kg,
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Table 3,19, Joint rotation and translation in X and ¥ directions joinis 6-9

| %3

B -.1:"..:::::? =1

3
e e

1;,,..:1}1“‘{'i } .:--1

) A unit displacement @ 6 (iraoslatien of joint 3 in
¥ -direction)

by By
ey = b

b} A unit displecement at 7 {rotation of joim 1)

k= By

db A wndt displacement ai § {ranslation of joint 1 in
Y-direction)

kzny  kn kn

kay ki ki kg

ka0 ka3 ks
0 ksa 0

[Kru]

. [Kurl

0 kg k7 kg kg
; ks 0 kzy kw kg
: kg k3 ki

0 ke 0
ks 0 0 0 0O (3.162)
0 keg O O 0
0 0 knp kg kwle
0 0 kg kg hysl*
0 0 kyy keg hkale
[Ker]
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kgt = ket

kes = Foy
-2

kss = kg

all other values marked by #{, }# are k = k™! with appropiate subscript.
The two reactions at supports acting on an indeterminate stair flight

must be checked.

For example,
Rz +kndy + kiada + - + kisbys (3.163)
Ryp+kyby =0 (3.164)
Reg + ksbs = Rs (3.163)
right up 1o Ry + koiby + - + kooby = Ry (3. 166)

only the value Rﬁ = M5

Ry = horizontal force H
Rg = vertical reaction vy | a1 nodal point (1)
R'.rﬁ = M7 = moment

fs = H = at nodal point (3) = Hs
Ry = vertical reaction at nodal point (3) = vg

A reference is made o Figure 343 for various values of R, for the
Support reactions.

Figure 3.43, ldeniification
of componeits af support
reaction far onginsl
structuse of staircase.
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Support reactions

The following gives the complete picture of various actions on the
staircase.

Fl F
::r +FTI - ) 11 5 0
P+ PP -y : By 0
Fl F :
v [
MF? f' b ;
'] + .-...--E----"' . EE —] Hﬁ [:j_Lﬁ‘?:l
MF! Kpy @ Kga b a
PFI ; 8 '
]
! - L "

In general Eq. (3.167) is writlen as

[Kroridlror = [P} + {Rlror

[ K Jror = wital structure stiffness mairix

{8}ror = total joint displacement matrix

{PI-' = (ofal joint load matrix corresponding to Py unrestrained and F,
restrained of joint displacement, respectively

{R}ror = total support reaction matrix of the original structure
corresponding to the restrained component of joint displacement

i, r = unrestrained and restrained
_If = fimal

Equation (3.15(f) can also he written as

-r' R
M3 H-;'-'_
f 0 F
By 0 Fy
v 0 v.F
G =[K] + 9
&
i 2 FF
F by :':r.
1.-"{ ) ¥
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for element (2)

] .
M; M|
f; & r

Py 5 P
v B vF

i | _ 3 | RE
y { = [Klrom sl MF
#/ o) |%
F

v Ve

EXAMPLE 3.14: A sraircase anelpis using siffaess method

A staircase shown in Figune 344 s fixed 51 A and C. The landing and the flight are
hsdlexd as shown. Assome that all the loads on the sleps, logether with the weaght of
the stairs, concentraie at the centrodd. Use the following member properiies:

M Lim) coda sina Ef/Ely v KINEl KXED K3 Ely Kd4fEL K5'El
AB(I) 5 08 -0ub 125 20 10 5 1.2 3 40
BCZ) 4 1 i B K 4 1.5 i 50

EfiyfEdiy = 12378 ez,

Flguse .44 The resistance
will be opposite sign
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1T

I SOLUTION

Reactions:

When all points A, 8 and C are fxed From statics the Joad in members i3 given in

Figure 3.44(a) and (b).
R f=-14 kN Rp t=-B9kN
Hpm =035 KN M. =16kNm
Mg = 3.0 kNm Ry t= 152 kN
gy =035kN—= Mi=-135kNm
ki; matrices (ref. Table 3.17)
kge? + kas® m A000LES) + 1. 2(0L36) = 26,032
kes? & kye® = 15168
(ks = ky)er = =18.624
kie=30=08=24
kys = =18
ki is wrilten as

—

26032 —18624 LB =264132 1R.624 1.8
18624 15168 24  1B624 =15168 24
LB 24 0o @ =18 =14 5.0

Biibis=| —oovrremnnens e PRI S I
=26.032 18624 =18 | 26032 18634 -1.8

18624 =15168 -24 @ —1B624 15168 -14
|18 2.4 80 . —1.8 —24 100
[kij] for A and B are then written as

™ S0 1] o =500 0 i

0 1.5 30 0 -5 10

0 i RO 0 =30 4.0

Wighn= | _spp o 0 50 o 0
0 =15 =30 0 1.5 =30

a Iy 40 0 =10 B0
Adding &z, and kyj ., and solving for {5}

g 0183
{8} = § g } o= = § 0743
s | EP | -01m0
The member forces in stalr and in landing
Ry up
Fia } = [f.m] g
M4 g
=26.032 18424 18 0.183 880 kM
= | 18614 1350168 24 0743 = ¢ =530 kM
-1.8 —24 50 ]| -0970 =300 ] KNm
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{ The other member forces afe computed as:

Faa ~8.B0

Vig 3 =4 B3N kX
My =3B

Fia 9.150

Vi } = { 0LGB10 } [y
Mg (L500

g —G 14

Vag } = { <0610 § kM
Mg 1.560)

Supenmpisimg all these

-Pl.q
I""I.4| =
My

{Pa)T = [—9.140 1.800 0.710] kN
(g’ = [9.040 1LBO0 ~0LT10] kN
[Prg}’ = [=9.150 —3.010 3,160]

130
—O8y ¢ kN
=i 450}

3.7 FINITE ELEMENT METHOD

3.7.1 Inrrodiction

The two types of finite element analysis are: plate flexure analysis using
displacement polvnomials and isoparametric finite element analysis,

Both methods are oseful. If the reader is interested in evaluating
moments, shear and axial effects in two dimensions, the plate flexure
method is adopted. Where the reader wishes to carry ouf an in depth
study, the isoparametric finite element method s adopted which, apart
from stresses, sirains, yielding and plasticity, also looks at cracks in three
directions and their propagation uoder ultimate loads,

3.7.2 Plare flexure analysis using finite element

The coordinates and the node numbering system can be defined for the
rectangular element. They are given in Figure 3.45. The dimensions of
the plate are a, b and ¢ (thickness) and the coordinates are (x, ¥, 2) in
the cartesian coordinate svstem. The nodes | to 4 have their respective
rotations

Br) o By nodal forees (Fy, Fyi) o (Fea, Fyq) and displacements @
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Figure 3.45. The
rectanpular hmis element
for plate fex

¥ | I
Bl Fy2)
4 (Fea)B2 B fﬂ_ﬂ{l
b y(F ) iy

Fy i [

B Byi(F) Bl Fs)
* | (Fia)By }" |

3

. ® @

In mathematical terms they are given as;

o = displacement = a) + ax + a3y -I—ﬂﬁ:’z + asxy -|—ﬂ,5_'p2

-|-rif.urJ + ﬂgxz}' +|ﬂ';|~.u.’J.r2 +:n|:|;--1 +1:11113_1J + H]II}'J (3.168)
I i
By = ——o — .
By i (a) (3.169)
3 = (Bye1, By, @) (b}
F.l:l
{Fit =1 Fu (3.170)
Fa
The nodal loads are related to displacements as:
(F} = [K]{5}) (3.171)
whene
(F}=[Fa. Foru o -0 Fuga Py, F;4]T (3.172)
8} = ['EI“.'EH. Wy ooy Beg, By, 3;4]T
where [K] is the stiffness matrix, elemental or global.
Mow
G T 2 3
8 = 3 = —(a3 + asx + 2agy + agx® + 2agxy + Jajny
+ayx® + dajaxy?) (3.173)
I 2
by = __3_1: = ay + 2a4x + asy + darx? + Dagxy + agy’
+3ayx”y + ajzy” (3.174)
for the edge 1-2 r = constant and equal to Zero
@ = ay +ayy + agys + aypy° (3.175)
B, = —(a3 + 2agy + Jayny”) (3.176)
By = a3+ asy + agy” +apy (3.177
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Figure 346, Typical mesh
schemes for a Aight or
landing.

Figure 3.47. Typical
landing or fight mesh
schieme.

Table 3.20 {conL.}.

A=2alDy + 867D, P = 10a’ Dy = &6 Dy,
B = 15abD
' a?

R-—I.'rb

Dy + 1560y + 66Dy,
€ = 200" Dy +8a’ Dyy

2
ﬂ::un%n,nsbnﬁﬁaﬂ., G' = 5a'D, + ' Dy,

ﬂi
M’ = 155D, = 6bDiy

=
E = 30— Dy + 15004 + 62Dy
T = 100 Dy = 2 Dy

[ B he
Fe= ﬁui_—,lU,+ﬁﬂﬂ—1Dr+3n-Dl +840,, ¥ =3ﬂ?ﬂ,+ﬁaﬂ,_,
G o= 10a* Dy — 208 Dy, K'=30D, + 24 D,,
T
= ~307- Dy - 6bDy, N = 15"::1:-, — 6aDyy
K = 106°D, — 8a%D z=a’D +3u“z 30D, - 84D
= z y =My ;iﬂr y
L= 155D, - 150Dy — ab, 0 = —30% D, — 0% D, + 30D, + 84D
= ; F S { T == F £ ﬁ j'+ 1+ ¥

[ wd
0 = 30— = 60y Dy = 30D, = B4Dzy

—
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When the shape functions are evaleated (Table 3.21) for a particular
solid, line and plate element, the global coordinates and displacements
gt any point within the element are expressed in terms of the nodal
values.

Table 3.22 gives the material compliance mairices for concrete, steel
and umber. Table 3.23 gives details about loads and forces. The gener-
alised nodal force equation is given below:

[P} = u[ﬂf”w]w] dv | u*) —f[ﬂl’”[ﬂl{ml dv
vol {3.194)

+ f[B]T"{uu} av — lelTIpl ds - f[NJ'*”'[c:: v
wil 5 vl

The terms given in Eq. (3.194) are defined in a matrix form.
The element stiffness matrix [K]° is then written as

414141
ur]f=f[alT"[n][aidv=f[fﬂr"ﬂﬂdcudzdnd; (3.195)
vol “1=1=1
Table 3.21, Sodicl isoparamielric elements (Bangash 1989, 1993),
Eight-noded solid elamem 7
r/I dl 3
; i
1
MNaode i Shape Tunctions Derivatives
N, an; N,
Ntk n.5) ! —L =1
iE, m.£ At i i
i1 — )1 = m)il =) o LU 8 B ¥ —p(l=ENl =1 —gll =il =K
FOU+E)L = m)] =) bl =miil =) o (LTI RO BN — )

FO+ 80 + )il -0
bt =)0 + W)l =)
T AT T
P+ EM] — w1 +0)
b+ )L+ T+ )
FL =gl + )il £

B =] R LR s Lk bl

g1+ mil =)
—4{l +mil =g
— gl —m)i+ 0
Fl =)t +5)
il + il +0
—fl+m)l+0)

gl +EHl -1
L =EN1I—D)
o L B
-l +El+0
1 +EH+D)
fu-ait+o

—H1+EH1+n)
—i[l —ENl+n)
=5l =-m)
gl +EHI = n)
21 +E)1+ )
B =EHI+ )
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(14 3+ b4 300 - piy— 0§

G — g — 1
=W+ 5= g+ 1z —1d
o 1A -
(= 3+ 04 0+ -+ )8
(0= Y 4 1)
(= l=3+E+ k= f
=g -1
S B IR T R
W+ - i -
e+ pry+ i -
W=y + -
W=y - pi-
5= 1hM=pf-
(] §+ b =SgHu+ - d
U+ M= 1M -
(=3 =g+ i+ 0]
5+ Dk =1} -
(1 3 =l = 3+ 0
=i - nf-

b

e

Wih4 g - - A+ 1 — Df- 3 D= = 1 4
=3+i-upd+a-n§  a-i-b-30a+ e+ (=344 3=+ D+ 3 = Df 6l
(34 13 - D 0+ IHE+ DE— G+ ik + 13- 0f 8l
(1 =343+ uz034+ 03+ D (= 34U+ 300+ i+ 8 L=+ b+ DA+ 1+ o3+ 0 Ll
Wid + 103+ D= {34 1= 1§ G+ i — i+ 9l
M+3-3-4DE+ 00+ 0] 0-34u=20+ o= f (T=3 b= 00+ i = oy + Dd £l
o+ 03— nt- 304 Ul — 1§ RN VT B ¥
(1 +3=3+ g+ iz i (1 + -+ 500+ k-8 (=340 = 3=)34 ik = 113 = Df £l
fgr =101 =- 0% (2= i+ E— (3= il 0z = F |
=1+ 0¥ (gt = 1ML+ 1% (3 = Db+ 10+ 1F [l
(od = IME+ DE- (gt = 1M =¥ (3 — b — 1+ 1F ol
it = M- 1= (b= gl = 15— (i — 1l — 1 — 1f 6
=1 -ng- (3= (M0 — 1E— = b = 1 - 10f 8
(=%=9-upiy - pig-pf (f + 34 b= 50000 = [+ 8 (T—3—W+5-)3— il + iy - 0f L
(= 5— 1% 33— [HB+ - G — il + 1 - 1F 9
(] == %+ gy - U+ 1f ()= ¥ =W+ 50— )b+ )8 (L=1— b+ 50— D+ Do+ 0§ 5
W= ME+ 1§ (3= U — = D — i+ 0f ¥
(0 43+ 5= Uiy = i+ Df (L= 3= b= = = f (= 4= b= G8 — il — g+ 1 £
(- Di3-Df- 3= il = - 0= 1l = i - b T
(0 + 3+ 34 Upid = ey = pf (1474 45T — = )f (T = 3=l = 3=303 = il = 1005 = 1

,rlm _ulm {logpiy

e o NE

SAAREALIN] suopng adeyg Fapon

WS PIOS Popou-AJEam],

U [T S
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Table 321 (carmt.h,

Twn, three and fouwenoded elements
The shape functions and derivalives for the isoparametnc ling elements are given balow.,
a} Two-noded line cleswent

Shape functions  Dervatives

z
ol M
3 k2 ¥
1 ahy |
Ny = =1 e
A T .
Gilebal axes

i Thress-noded line element

Shape functions  Desivatives

1 My 1
Ny = =(f = —_—=fam ="
M=3E-TE =3 t=f:}=“"““""
N2
My =1 —E SE'=E solid elements
| s i
N}—E[E.+]]!. ¥—5+§
¢} Four-pocled Kine element
Shape functions Derivatives E=L = consiamt
2Ny =L

| + 1
N = EU - E}(EE - 5) 5
4.0 AL

o LI
J"ﬂ']—}{l E ](E+2} T
. I -'_I._l 3."-'.1
e deofar-1) 2
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Table 5,22 Matenial compliance matrices (Bangash 1989, 159403),

a) Concrele of composile materisl

[£2] - Wariable Young's modulus and Poisson's ratio

- (1 — vrisy)

My = E
1l T |
Dy = (v +_i-'131':-|JEI
]

Doy = vy +_=-*:|U.'-ﬂ£|
u

Dy =0

Dy =1

| Dy =

Dy

I Pl v )
(1

Doy = (- ”]3‘-‘!]]E_:

(v + '-'ulm}fi

E; Dp= T

Dy =
Dp=0
Dy =10
ey =10
Doy =0
Dgy =10

{223 + vizen )
1 — by =———""8
LY 15
(1) + vl (1 — vzl
Dypy=————nslh Dy=——=E
u u
D{t =10 D.|1, =
Dy =10 By =0
= 1=z = w3t = eminy — Wgizteg — v e
Ejvyg m Eyeyy Dy m Gy
Eyuy = Eyvpy D =Gp3

Extnz = Ejvm

s =
Doy =10
Doy =10
.D.g.:f.l
D=0
s =0

e =10
iy =10
Dhg =1
g =0
Dgg =0
Dgs =10 |

The valves of Gz, Gy and Gy are caleulated in terms of modoles of elasticity and Poisson’s ratio as follows:

G 1 E, . Ez
i1 T T R T
1r Ea Ex
G = = -
5= e T v;]l]
i E E)
Gy = E‘irl + iy d + M+ u-|;]] =

by For isolropic cases; £y = Exm Ey = £

1

T2

!
2

1
2

Ey Ey

+ =
201 % vy2) 1(ﬂ+v|:)

Ea

Ex Ex

M +em (.E: )
2 —+im
£y .

Ey Ey

c) Steel or timber w12 = v = v = Uy = v =
| ¥] - Constant Youwng's moduius snd Polsson's ratio

E

N s —
PI= i —1

[[1—wv

b
v
i
0
Li]

-
l—w

(=2 |

u

+
21 + vy} 1(.E'].

7).

5 =

0 4] o 7
i 1] 0
0 ] ]
]—jlu 0 o
1—2u
0 - 0
o " | = Jw
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Table 323, Miscellaneous loads and force (Bangash 1984%).

Gravitational forces (susface Torces)
Egquivadent nodal Foree in the line of gravity £ direction.

ﬂ L. 4 a n ﬂ
[F.h=le’]-| 0 ]ﬂw'=EEEW1L.:| o ]uh.;.xw.wfws
¥ =PE

da=l femil =l o 1

Body forees
Body force component per unit volume st (X, ) point is:

fx ) X fi
Ht=1fl=Pu?ir}, i ;Ejr[ﬁ.f]" fy § dvol
I 0 i I

L ihe case of lsoparamselnic elemeans,

Concentrated loads
Concenteated loads away from the point.

{Pec) = Mi§p.mp. 80P, §y =% my=-n =+
Distributed loads
a¥ o ar ary

el 1 1 # amo # dn

" - | 3% #X 42 ax
- T |82 #X 82 aX _
(Pl = J{J{Jr N [pes iy el - n de dn, for b = 1

—1-1-1 aX ar Ay ax
[T T T
amilarly for £ = &1, 5=zl

Thexmal loads

IPlr= Jlr B Derde =% 3 (Bl Dller 110]i, 5 Wi W; Wi

dem] foml K]

er) = [arT.arT a7 000), T=Y MT
il

Creep loads

A
(Ples = f BT Drcdv =5 5 S 1B s [D1e i i W3 W) Wi d dn
i=] j=1 k=1

Tuble 3.24, Siress and strain transformation matrices (Bangash 1989

[ TahA T}

T : :
E N omy oMy 1
n h ma A

£ oy omy oma

Hlohal axis Local nxis
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Table 324 (gont.).

Drirection cosimes of the two axes ane given by:

I, = ok, x),

Iy = cosin. x},

I3 = cosil, 5,

mq = ciklk, ¥,
my = COEN, v,

W = cosl, v,

my we cOxiE, zh
ay = Codin, £k

Ha = gosif, 2}

The following redationships can be writken for kecal and global sivain and siress vaciors:

fecd = [Fillec L

and also

{2} } = [Talloz).
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mima  dyoy Flamy mpRs +myry ey A+ g
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The nodal force due to body force:
4l ] 1
1P = | NI IG)dV = —fff NT" G det J dt dn dg
il
=1 =1=1

The nodal force due to surface force:
(P} = - ﬁ (M) {p}dS

The nodal force due to initial stress:

+1+1+1

(P I =fIlﬁl"’"[mfdv=fff37"crud=udladnd-t
Wil

-1 =1 =1

(3.196)

(3.197)

{3.198)
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Figure 3.50. Mesh scheme
for an integrated staircase
using isoparmetric
elements.

The nodal force due to initial strain;
(Pog)© = f‘d (B)" [D){eo} AV

+141 41 (3.199)
== [ [ [ ¥ postsasanas
B
Eguation (3.195) can be written as:

(FI* = (K1) + (P} + (P} + (P + (Peg)” (3.200)

Where shear and torsion are to be involved, Table 3.23 gives the stiffness
matrix [K] which is included in the overall stiffness matrix [K] of the
structure and in this case the stairs. During the finite element analysis,
sometimes it becomes necessary to transform stress and strain matrices
[T{'} and {T."}, respectively, from local axes to global axes or vice
versa. These are done with the help of Table 3.24. The finite element
mesh schemes are given in Figures 3.50 and 3.51.
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Tabhle 125 {opal. ).

e vl of Oy Oy and Oy are defined as

2 ] ]
1 % -3 -1 o
! 1 i -1 0
ar i 1 _! 3 i
Cp = b = =54 Tlas ! Tlagd ¥l
ey |0 0 0 0 1y
0 D 0 0 Tz
. 1] 0 o Tor
c idy  @dy @8 Sy @5,  ddy 85

I e I e e S o ol
R T T T T B T 7o R T TP
dly d1gy  dfp dny Ay dny
Hugy M) BT @0 B1s, @]

In a manx form Oy is given as

}';251 - IE‘"‘r - S.,] 5
$i25, — 5 — %) 5
Csm bi2s — 5 — 5 %
e 11:x'r
=Ty
Py 2ty
1.‘:”' '21;,;_.
EIWE T
cos 30 = —= x --33;
z e
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from Eay. (k)

3
FoosIR 37 fens 3 1.3 -5 L Y
= , ==y = e
ik 2 Tl ’)(ﬁ) g
[P e

3 Al 9 -0y ah 3Tk 3hak

T3 8 ) T 1537 |3 T 17 o)

now
Ay iy a5
H', =.;-,-5'_- —TE.:. d—-;: —_513_-—1!}:, 3—5{ —5.53-—1:3:'
!is

'E'I = il.-n.l\. =0y =0 i
2 =1 =1
-1 2 -1

15, B 1] =1 4%, _ 1] =1 A _1 2

ey 3]0 Mey 3]0 TR B
L] i) L
LI 1] LI

ikl

1)

(kj

]

()

()

(i

(gl



Finite element method 195

Table 3.25 {cont.).

3 ad 4
FJ:, = 2y = Mty ST:: = My Toy — 255 Tis ﬁ = Iy Ty — 35y T iyl
H'I:'! T EI LS T at“r‘ T
_ T ooooin)T, TR L 000001
Ao} oo #a} S dfa} : : N
1 . ]
3[1{3."5: - Ti!’} - ':S=S: - 1::'::I - {S' S.l' - [’z-"’}]
1 , .
i[-[-!'}.i; = 1;:] ""2{5'-“-'-' - ";:':]'_ (S:8y - t;:l':l]
Al ] . 2 - o 2 : 3
W - i[_[-'-'l_r:: - '[:f:] - 2{"—"' 3 — 1:;} + E{S’h" - T""'}] “

Ny Tee — SeMayl

HTayTey = SxTyg]

N Ty Tyr = Sy Tag)

Eguation (s) is further simplified as:
%[?_‘ir.!'z — 88— 5.8, - Eti; +1, + 1:-:'],]

1
j[:!s.:r: — 58, — 5.5, - I, 4 415

N 1
Tl 3[23, By = 55 = 5,5 = 20n, 41, 40 fsa)
IITHIM = 5.'1|:r.:'

ItT:rT-u' -8y Ty: i

Ty Ty — Sytag)

From the fow rle of the normality principle. the following relationship exists between the plastic strain increment and the
plastic siress increment:
af
= b =
diel el (ty

This equeadion cam be interpreted as requinng the normality of the plastic sirain increment vector to yiekd the surface i the
hyper space of & siness dimensions. As before, db. is proponionality constant

For siress incremenis of infinilesimal size, the change of strain can be dnaded imto elastic and plastic poarts, thus (as
hefore):

dfe}] = dis}, + dfel, {up
The elastic increment of sress and strain is related 10 an isotropic magerial property matrix
D] by d{eh D] {de} )
i
el =101 dio] + dl{ ;f} )

The fumction stresses, on differentiation. can be writlen as:

A aF _far T
4f = - dor + o doy o+ n_[h} di) (x)
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Tabde 3.25 (cons. ).

AE00

3900

4000

a1

SUBL=FE-FPARIJF, 1]
SUBZ=PAR [JE+1,11 -PAR{JE, 1}

AesSUEL® [FAR (JF+1 .21 -FARI(JIP, 2} } /SUBI+PARI(JIP, 2)
B=SUEL1* (PAR (JE+1.3) -PAR [(JP. 31} / BUB2+PARIJP, 3
FE1=SUB1* {PAR (JP+1.4) -PRR{JF, 41 } /SUBZ+FAR (JF, 4]

PE2=SUBLY (FAR (TP+1 .5 -FARIJP, 5 | /SUBRZ+BAR (JE, 5]
VART1=S8IG{1)+FIGI2]+SIG(3]
VARFZ=1.0/6.0" | (BEIGI1)-SIG{2F i * "2+ 5IG{2)=-SLGE{3)]1"*2«

[BIGII}=5TG {1} } **2+FIG (4} ** 2«51 {B} " 251G (6] **2
VARTIA=UARTEF3.0
VIII1=SIG(1)=VARIL3
VII32=8IG (2} -VARTLD
VII3Z=8IG(3)-VARILZ
VART3=VITI1* (VITIZ*VIIA1-5IG (8] **2)-BIG (4} *EIG (4)=VII1]
=EIG{5)} *ETG 15} b+SIG (6] * (BIG(4) *SIG(5) =FIGIE) *VIT3Z)

VARITH=1,5*3.0%%* (0.5} *VARTI VARJZ*=1.5%
IF{VARITH .GE. 0.0) GOTSO 4000
ALAM=22 . 0/21.0-1.0/3.0*AC05 { -PKI *VARITH)
TOTLAM= FEL * 008 [ ALAM
OFCITH=PEL*PEZ*VARJZ** 0. 5*5IN | ALAM) A 3. 0" PROF 4]

S1M { ROOS (-PE2*VARITH) 1)

GIIO 4100

ALAM=1.0/ (3 .0*AC0E | PE2*VARITH)

TOTLAM=PE] *C08 { ALAM )

DFDATH=FM *PEI*VART2**0  S*SIN[ALAM) F {3.0*PROP(4) *

STM{ACOS (PEZ *VARITHN 1 |

CFOL1=B/FROF (4

DFDFZ=A FROP (4} = “2+TOTLAM, [ PROP[4) "VARIZ *=0. &]

oUIlnEil) el b

DWIIDS (2] =1.

DWVIiRs(31s1,

DVIIns(4) =4.

rIins (8] =g,

Ilbs{61=0.0

I2Ds(1)=1.0/3 00 (2 G*3T3(1)}-50Q(2] -8BIG(3] |

METAnS (2 =1.0/3.0%{2 0*SIG{2}=RIGI1}=5IG{3]1}

VIS (3=l . 043 . 0% 2.0"8IC{3)-SIG{1}-SIG[2}}

DvJins(4)=2.0*STG (4}

VNIZDE (51 =2 . 0%8IG(5)

DrI2DE (Eh=2 0*STE{E)

DTIDE (L pm] 343 0% (WIEZLY (=WITIZ=-VITAZ) j+Z 00 WITAS*VITIL-
Z.0*ETGIS] **2+81G &) **2+8IG (&) **2

DVIIDS (2=l 03 G (VITAZ* (~VIIIL-VETID] h+2Z.D*VITII1*VIIIA-
2. 0BT 6] **28TG 141 = *3+8IG{5) **2

DVIIDS {3 ) el 0. 0" (VITIIY [(~WIII-VITIAZ) ) +2. O*VIFI1*WII12-
205004 **2eBIG 5] **2+81G (&) =*2

DVIZDS (4 ) w=2  0*WITII=SIG {4} =2  O*SIG (5} *STIG (&}

mA0s (51 =-2 . 0*VITI1*BIG (5142 .0*5IGId ) *SIG (6}

L v I = = ]
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4, Accummulate total displacements

(Ui} = Ui} + (ALY (3.212)
5, Calculate strain increments as,
{Ag; ) = [BHALG) (3.213)

and strains
{e:} = tei—1} + [Agi} (3.214)

6. The stress increments are calculated using the current non-linear con-
stitutive matrices

{Aog;} = [ f{a}H Ak} {3.215)
Accumulate stresses as:
foi} = loi-1) + [Ao) (3.216)

ISP-stress point indictor
=0 elastic point

1 plastic point
=2 unloaded from plastic state
= o, uniaxial yield stress
6.1 Firstly, the stress increment is calculated using the elastic material
matrix as [Aa}} = [D];1Ae} where [D]; is the elastic material matrix
for any material in the staircase. First estimate of total siress:

[o] = [oi-1) — [Ag]) (3.217)
6.2 Calculate
(@) = { oD}, 1@-1) = [ Flei-1)} (von Mises) (3.218)

yield criterion or other yield criterion such as Ottoson ete.
6.3 If plastic point {i.e. ISP = 1), go to step 6.5,
6.4 T; 2 o, point (ISP = 1), transition from elastic to plastic, calculate

factor frp

fig = (”_J_—f"‘) (see Figures 3.52 and 3.53) (3.219)
oy =

stress at yield surface

[oi}¥ = (0i-1) + frglAc)) (3.220)

caleulate elasto-plastuc stress increment

(Agi} = (DI lai)" (1 = fr){Ae) (3.221)

total stress

lo} + loi)Y + (Aoi) (3.222)
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set ISP=1; goto 6.7
if & < oy elastic point, 0; = o] go o step 6.8,

6.5 Plastic point in the previous iteration, check for unloading ic. 9; =
oy, see Figure 3.53 go to step 6.6,
Unloading at this point, set ISP = 2, total stress

{oi} = [oi-1} + { Aoy} and set {oy) = {Fi-1) (3.323)
go to step 6.8,

i__..e__  /
ey f1 _F-"""f’

| (& -8, L
:\( . From two similar tiangles
A'BC and A5y

-

k3

Stress ()
L 1
=
il
;:I._.
[
[

a) Equivalent stress-strain carve for stecl

Jr — trangitional factor from
elastic to plastic regime

From the figure

B+ AT =8,
=iy T Ty
=

Ll ¥ il

Yield surface

Figure 3.52. Yickd eriteria b Yield surface in the principal stress axes

Isotropic hardening o, =yield stress
"’ra/ E = initial yield moduls
E T da Ideal plasticity E, = post yield modulus
oyl - = ___r_:_l___/ HafE =0 H = strain hardening
i
nloading:
clastical ' _da_E-E
N TeTEE
E AE
L & | Ee |

Figure 1,51, Stress-strain . o .
curve for steel plate with {Plastic strain) {EJ““':
elastic ualoading. strain)
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CHAPTER 4

Staircases and their analyses:
A comparative study

4.1 INTRODUCTION

Varions analyses mentioned in the text are examined in this chapter.
A total number of one hundred and fifty free-standing stairs and thir-
ty helical or horseshoe or a combination of these are examined. Two
types of finite element analysis are carried out. One particular analysis
is based on pure bending, shear and displacement using polynomials
of a specific order. Where torsion and axial effects are fo be included,
isoparametric finite element analysis is adopted in which a provision is
made for solid elements representing concrete and steel major sections
and line elements representing reinforcement; either matched with the
nodes of solid element or placed in the body of the solid elements. For
stee] stairs, the same finite element analysis is adopted except where
plates are used; a special plate element is given together with a dis-
placement polynomial in Appendix 1. For isoparametric finite element
analysis various shape functions are included in a specially developed
computer program, [SOPAR. The output gives siresses, strains, plastici-
ty index, cracks, failure modes, steel yielding and fracture under static,
dynamic and impact loads.

4.2 A COMPARATIVE STUDY OF RESULTS

4.2.1 Free-standing stairs

It is interesting to review the assumptions made in some of the analyses.
Licbenberg (1956, 1960, 1962) has introduced the concept of the space
interaction of plates in order to analyse free-standing staircases. This
means that the staircase can be treated as an indeterminate structure. No
torsional effects are included. Siev (1962, 1963) extended Liebenberg’s
method to include secondary stress resulting from the compatibility con-
ditions at the intersection between the landing and the flights. Torsional
moments and their stresses, being negligible, are taken as secondary
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stresses in order to evaluate primary stresses. Gould (1963) and Taleb
{1964) have produced simplified analyses by neglecting the bending
moments along the line of intersection of the landing and the flights.
Cusens and Kuang (1966) have assumed thet the staircase behaviour
can be simulated by the skeletal rigid frame. Two halves of the staircase
are then taken as determinate structures and horizontal restraining forces
and moments are applied on each half. As a result bending and torsional
moments, axial and shearing forces are evaluated. This concept is well
recognised and is extremely valuable. As can be seen, the results are
obtained by the program ISOPAR. The number of solid elements and
line elements is 250 and 1200, respectively, Based on the model adopted
by Cusens and Kuvang (1966} and as shown in Figure 4.1, finite element
analysis using the isoparametric elements représenting concrete elements
and line elements in the body of these solid elements give a failure load
factor (excessive cracking, bursting of the reinforcement and the dislo-
cation of the landing from the flights) of 7.1 against the experimental
value of 6.48.

The same mesh, for economic reasons, is kept in the finite element
analysis when the results of others have been investigated. The load-
ings, dimensions and others including boundary conditions assumed by
the authors are included in the finite element analysis; except that the
torsional aspect is not ignored, Figure 4.2 shows the comparative study
of results of the finite element analysis with those used from the analysis
produced by various authors (Kersten and Kuohnert 1957, Atrops 1966,
Cusen and Koang 1966, Leonhardt and Monnig 1973, 1975 and Bangash
1993).

A finite clement analysis was carried out for slabless tread-riser stairs.
This time the analysis was based on the elasticity of the materials used
in such stairs, The far ends of such stairs are assomed o be fxed. No
failure analysis was camied out and the stairs were analysed within the
design limits. The analysis is in line with other research so that it can
be compared easily with the simplified analysis produced by Figure 4.3,
showing the comparison between the two analyses for stairs with differ-
ent number of steps for the ratio of width of treadheight of rser &7 H,
ranging from 0.4 to 1.0.

A plate-bending finite element analysis was adopted for steps. Next
‘Scissors’ type staircases were analysed. Since isoparametric finite ele-
ment analyses are not involved directly in producing bending moments, it
was necessary initially to adopt the plate-bending finite element analysis.
Bending stresses and shear stresses were produced for various positions
of loadings, Using the same mesh size, a two dimensional isoparametric
finite element was carried out assuming the same boundary conditions.
Stresses and strain were produced. In most places they were almost the
same and the errors in them were within 5.5%. The isoparametric para-
metric finite element analysis was then extended to include torsional and
axial effects. Figures 4.4 and 4.5 give parameters for moments and ax-
1zl forces for various widths of soch swirs, The following gives further
explanations for their use. A typical example is given which is based
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.- - - - stregs on botiom surfies,
®  tension;

-  compreasion;

O siress;

w, g uniform load;

Fipure 4.2, Free-standing sfakis — & comparative stody of sinesses.
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WL
m
==

——————— F. E. Plate bending (Barpash),

Lieherberg 1956, DIN 1055, Gouald 1963, Saater 15964, clasgical Cusen and
Kuang 1966, Rajagopalan 1973, Lecnardt 1977

Figure 4_3. Ploted vaives of the variation of  with n for slabless stairs.
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Figure 4.6, Helical stair of
Bergran

i

&%

Where torsional and direct shear are involved, the stresses are computed
is:
vV aM,
g=—x —
B B?
The straight member of a rectangular section: the maximum torsional
shearing siress on a rectangular wide cross section BDy is given by

{4.6)

M,
=Ty ==—z3 —_— 4.7
Tonan = T3 Hﬂ}( +EH) {4.7)
where B = Dy.

The maximum torsional stresses paralleling the shorter side is 07571,
The variation or increase of torsional shearing stresses due to curvature
is given by

M, Dy
o = ¥ (3 +1822 ) (4.8)
where W is the multiplication factor for stresses.

Figure 4.7 gives the value W which defines the variation.

Bergman's method (Bergman 1956) described abowve is an approxi-
mate method of reducing the helical staircase to that of a horizontal
row girder. The structure strength of the helicoidal effect is not consid-
ered. Morgan (1960), Holmes (1950) and Scordelis (1960) are based on
the longitudinal three-dimensional indetermediate structure of helicoidal
shape to the sixth degree. They take advantage of the symmetry and
a number of redundants are equal o zero. Holmes (1959) assumes the
cenire of gravity of the load to act along the centre line of the basic
helix and displacements are evaluated wsing Catigliano's theorem. This
differs from Morgan (1960) owing to his location of a centre line of
loads parallel, but not coincident with, the centre line of the staircase.
A more reasonable approach is that of Scordelis (1960) in which the
centre line of the stair is identical to the centre of the stair. Scordelis
(1960} also suggests that the cccentricity of the centre line of loads
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CHAFTER 5

Design analysis and structural detailing

5.1 INTRODUCTION

This chapter deals with the design of staircases and other structural
components associated with them. A number of stairs have been designed
based on the information provided in earlier chapters.

5.2 EVALUATION OF VARIOUS PARAMETERS AND LOADS

5.2.1 Relation between loads, momenis, shears and axial thrusts
of inclined and plane projection surfaces

If the two ends are simply supported (Fig. 5.1}
g'(L')* _ geos’a(La/cosn)

M= = (5.1
8 B )
where ¢ and g are uniform loads on plane projection and on slope,
respectively.
The shear force
[
gL 2 La
V=—=gcos‘a- (5.2)
2 1 Zeosa
Lycosa —
% =Veosa (5.2a)
The axial thrusts N is given by Eq. (5.3)
N = "Li% = Vsina (5.3)
where
— L
V = shear = 12
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Figore 5.1. Loads an plane
ared inclined surface,

Figure 52 Mosmal stairs

3.2.2 Thickness and second moment of areas

Assuming Lz = 1 m and the width B = 1 m for the stair of Figure 5.2
for & normal stair

P Dy n2+3Dg
h=3%*72 = 36a+qDy = 1% 64
405

The following table is prepared for (/D against values of i and iz
where t = h|cosa and dy =1 + Dy.

Tabde 3.0, 0/ Dy versus values of () and i3,

110y 1.4 11 1.2 1.3 1.4 1.5 1.6 1.7 1B 1.9 0
i 00278 00256 00237 0022 Qo204 00180 O0LTE 0167 QUD1ST 0.0147 QD139
i 00428 G018 ODEtd 000l G034 03EE 00382 0uRYT 00AT) 00368 Ou036S

5.2.3 Srepx and reinforcement

There are several ways of amanging steps on the main flights of the
stairs. The most popular ones ane:

a) precast steps in concrete on the staircase flight (Fig. 5.3);

b) steps cast in-sifu with the stair case flight (Fig. 5.4);

¢} slabless stair with steps doing a dual job (Fig. 5.5).
These ligures show, respectively, the reinforcement layouts,

The steps shown in Figure 5.6 are a typical helical stairs. The steps
are balanced om a fight. They are doweled into the main Aight. The
geomelry and the analysis are fully dealt with in the text.



Figure 5.3, Precas! concrede
stairs. Node: ¥y = Dy +
depth of embedment.

Figure 5.4. Cast in-sim
sbairs,

Figure 5.5. Slabless stairs.

Figure 16, Reinforcement
details for the steps of a
twpecal helical siairs.
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5.3 DESIGN EXAMPLES

Based on the analysis given in the text, a few design examples are given
to demonstrate their capabilities. Some numerical examples are already
given in Chapters 2 and 3. The same design principles are adopted for
them in order to obtain final design drawings.

EXAMPLE 5.1

A typical example is considered for the design of a single flight stalr with three difTereet
bsandlary or load conditions. Using the following values and parameters. desipn this
staircase by assuming EI constanl as

Dtz

Deesign based on the Limdt State Concepl

Srair waisl = 175 mm, thick = 0
Salid finish o treads, risers and the landing = 40 mm

Flasier o finish = (2 kN
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at O = 1.5 »« 24.3 cright Vg = 3645 kN

gl H= -5 2431 =—1215 kN

Axial thrust N:

at A = 0.5%4 = 24.3 = 144. 341 kN (comp)

at ©, Ny = =400 = 4.3 = 97686 kN (comp) lefi
at £, Neg=—4x 4.3 = =072 kN {comp) right
Case 2. Momen

My = =017 = 245 = —4, 131 kN m

Myz iwher X = 1 mi=041 = 243 =093 kNm

Case 3. The ends are fixed znd the tanding is loaded with 1 kM/m. Sloce the dimensions
were different, & re-analysis is carried oaf below for the height (2.5 m) and a plane
projection of the fight (3 m) and the landing (2 m) giving 2 wotal bonzantal distance
of 5 m. The following is the summary of varioos cocfficients, loads, moments eic.
Ju=13 fu=108 SFoa=06. fa=fy=0

Siz = fx =065

Fag=0. Ey=4/3, Ip=4/3

ithe matrix [ Flxy bs solved for Xy, Xy amd X

1 =0,1914, X3 ==0383 amnd X3==1.69
H-Ilu+ﬂl|x|+msz+mj.r!,

My =01914 x 243 =464 kN m

Me = —0383 x 24.3 = -0.3] kMm

Mg = =160 = 243 = —41.07 kN m

The maximumy positive moment in span CF = -0.45 = 24.3

= 10094 kN e
Stuir design based on the British and Edgropean Codes. There are three possible cas-
s mentomed which have o be examinsd. The staircase has to be checked apainsg
them. Under Case 1, the maximom moment ot © = =972 kNm: Ve = 3645 kN,
N = 97.686 kM, the maximum moment al A and B = 0 ¥y = 1187 kN Ny =
= 144342 kM. These values are chosen for the design of this staircase.

Mizn Baghl slab:

M w12x10F
T ohdlfn, 1350k 1497 x 35

d= ﬂf{ﬁl\tr-rllh'):l?j—m—ﬁ-:'lﬂ e

K = (0637 < 015 = K’

no compression steed s required and che slab thickness is adequste

r=d|0.54 /028 - Ll = 1.8% = 0.9%4 DK,
¥ on
M 972 = 10

A

T 0BT,z 0.87 x 460 x 0,58 x 149
= VRS2 mmd 1,25 mowidth

ar Ay (mgdred) = 1372 mm®/m width
o provided Ay (poovides) T16 bars &l 135 mm centres [T16-125],
[As ipeeridedy = 1608 mm?].
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The: memenarm fetiforcement for high tensile distribution bars o be provided shookd be
(135 of the gross cross-sectional anea of the slab,

Ay mis = 013000 % {1000 x 175) = 227.5 mm*/m run

Prowade 10 mam kigh temeale bars (HT) ab 3060 mm centrex (A, = 261 mmim ruml,
First check the bar spacing w satisfy cracking condition (0 = 175 = 200 mm); the
clear distamoe should mol exceed the lesser of 3d or T30 mem. The valoe af 34 — 447 is
the maximum clear distance, Both main and disiribution steel spacings are within the
established limit.

Shear force ¥

| The wltimate design shear force m ©, Vo = 3645 kN = Vg or Vp. This vales of
shear is considered and the reinforcement designed and checked for 36.4% KN should
bz maimtained throughom

' Vo 3645 « 107 .
! el H -
E bod 1350 = 145 D18 B/ mam
1A, 1000 = THOR 4 400
hl.d' _IEH)JHIJH_]":E}J% and T—m}]ﬂ

Mote: ¥ owas compuied on the basis of 1350 m width.
The desipn concrete shear stress v 18 compuied from the following squalion:

v — allpwsable shear siress = 0.79[ 1004, b1V (40074 f o,
grade I5 concrele

For grade 35 concrete: fo, = 35 N/mm®

e = (BENBI 25" = 0.965 N/mnr® > 0.18

Mo shear reindorcement 18 Recessany.

I the far ends are Gxed having the same dimensions and ihis wme the landing
is loaded, the moment will be different. Here at the fixed end st B, the top part of
{he landing slab should be reinforced addidonally for a moment of that magnitade. A
similar calculation should be carmed oul for the evaluation of reinforcement.

Figuare 5.7 shows that for any or all of the conditions. the staincase design is adeguane.

Check for deflection

Span/ Depth = 5.0/0.175 = 18.57 = 26

Mo 97,4 = WP
I bd? 1350 = 1494

hodification [actor for the lension reinforcement

= 3,243]

. 5 1372 .
um:c_f,—ﬂ:-c-iﬁl'l:-cl = 2453 N/mm
477 = 245.3
= 1 e D0
M. F =055+ W09+ 33430 1016 = 2.0

Allowahle span 1o effectve depth for wension reiforcemenl = 26 = 1016 = D64 <
28,57, At C a beam 13 placed in order o reduce the span b 2 m, Actual spenddepth ==
F000/14% = 2013 < 26 the deflection requirement is adeguate.

Fintte ¢lemend amalysiz

Fiar nisdind tsoparametnc clements = |50,
Two neded bar elements placed on and in the body
of the solid elements = 340,
Facter of safely =21
I Euraiode 2

| Based on details given in Appendix 1, 1he design given in this exarnple 15 safe.
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b} Step saction elevation ¢} Case typs
service duct

e ' o ol
(IRl A

Total load =933 kN, Ry =411 kN and By = 522 kN

Similar work based on the flexibility method has been camied out The maximum
bending moment M = 659.8 kNm a1 2.52 m from B.

Mote: for a span of 1.7 m the load applisd = 18.9 kN,
For span aff 2,52 m the load applied = 24.3 kN m leaving BS0 mm for the end A

M BEx 10 ;
_m‘rﬂ_lmxlmum-ﬂ.mtﬂ' = (L156

:=:f|:ﬂ-5+1|'ﬂ.25—a‘£;~\=ﬂ.m < (95

M 5 )
A= T ™ 1298 T /2350 mm width

of = %60 mm®/m width

K

Adopt 13T12 bottom equally spaced in 1350 mm width of the stair and 1T10 per step
distribution reinforcement, The minimum stesl as before T10 at 300 centres (A, =
262 mm?). The relnforcement is adequate against cracking.

Perimeter of sieel required as LU Bar made of mild steel from the B C owall is
160 mm,

52.2 = 108 : :
m—l.l M/mm* as a value for bending stress is OF.
Hence TRI0 - U Bars from B C. wall A, jpoovided) = 553 men?

Landing load = 14 = 315 = 1.7 =75 kN
Two Aight =2=41.1=822kN=157.2 kN
Maximum main landing slab moment {span 2850 + 300 = 3150 mm)
width = 1700 mm
M = 62 kN m from the Aexibility method

area of steel as per width 1700 mm = 1270 mm?® [11T12 equally spaced in 1700 mm
m?‘tﬁ new reinforcement layout is shown in Figare 5.9,

Finite element analysis

Four nodded isoparametric elements = 150,

Bar elements = 430,

Factor of safety apainst design = 1.51.
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Case 2, Monsdithic with beams

M =01wly = 2071 kN/m

Vinan = 24.1 kN

The reinforcement designed for Case | and thickness are sofficient. In Case 2 a rebar
arrangement would be necéssary to bring about the monolithic siste between the Right

and the supposting beams.
(B} BSEN D British Code

Deesign load = 14gy + 1.6gc = L4 x 7944 4 1.6 x 5.0 = 19.12 kN/m?
Case 1.

M o 0,125 % 1912 x 4% = 38,24 kN m

Mo 3824 = 1P
bt g, 1000 x 1722« 30

Mo compression sieel is needed and the slab thickness is adequate
o= (L940644 s D954 OF.

oM 3824 = 1P

DETfz 057 x 250 x D.9406 « 172

RIG-1S0 Ay gprevided = 1340 mm®/m

for comparison R16-160 A, prosidedy = 1263 mm®/m
Vo= 1002k 10 x4

Bud T 1000 % 172

v, = allowable shear siress (2% grade concrete)

B 1004, 77 fa00n M

K= = (i3l < k' = 0156

A, = |77 Iﬂm:fm LA Epacaived) !

check for shear v = =22

173
Cirade 30 concrete v =070 = (2—5) =0.Th4 = 0.22

Mo shear relnforcement ks reguined.

Case 2. Monalithac beams

The design of the Case 1 is oot affected.

EuwroCode 2

Based on detalls given in Appendiz 1, the design given in this example s safe. The
codes show practically wo difference in the final resuli.

|
EXAMPLE 54 I

The peneral arrangesent plan of a free-standing staircase of o mulli-sionsy buibdiog is |
shown in Figure 5,11, Using both the indian Code 15 456, ACH and BS8110, design
Chis sfafrcase which is bailt srourd the stairwells as shown in the figure. The following
data ane adopied.

hy = piser hetght = 150 mm
[ = poing = 230 mm
The siair slab embedded in the wall = 200 mm

I = elfective beight = 3 m
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| 200] 1000 | 1250 | 1000 Izuul__

1

T10-180

Figure 5.13, Reinforcemsem
details 345« 12

L

] = s,V w L3 KM, — - =4 5

My = 11 KN, Vi 30 03048 = W "
_ 4% S

The weight of the slab = T x 0.15 = 0.056 kips/

Dead load = wp = 005G x | 4= D.ﬂﬂtimf[‘l:{ll'widlh
Imposed load = iy, = 0.100 x 1.7 = 0,170 kips/fi® of width

M, = ultimate moment = (U079 £ 01703 343 1:-: !
e N ' 03048 10

= 3.190 kips/fi width

Rednforcement pp equal 1o ahout 0.375g, or one half the maximem permitted by the
ACI Code. In order o have reasonable deflection controd Table 5.4 of the cods 1

consibered.
0380, =03 = 0.0 = 0013 =
metr o 4000 g

TODESF T DES w 000

R, = pf,(j _ %pm) = 00139 x 40,0001 — 0.5 » D.0139 * 15.T)

= 495 psi
M, 417 319 = 12,000 4 172
required (d:k.b) {&9 zmm} "

FRL01E o] #5 bars, [}y peg 2E2+ 031 +0LT5 =394 in = 4.5 in
provide o =45 -03 -0T5 =34 in

3.45
oo )
shear reguirernent Vo = ].15% = I.J!%

= 1.62 kips/ft of width
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The design shear strength V- for & stalrcase slab withoul shear reinfncement

B[ 2 bd] = 085 « 23000 3 12 % 344 » Iﬂlﬂ}

= 3.54 kipsfit

= 1.7 kipsiit

The stalr slab with relnforcement is adequste.
) BSE1I0

Characteristic design load = 1.4 = 9.88 = 14.23 kN/m?
Characteristic design imposed load = 1.6 = 3 = 4.8 kN/m®

= 19,03 kNirm?
Charscteristic design dead load = 1.4 x 7.44 = 10.416 kN/m?
Characieristic design imposed load = 4.8 kN/m?
Total load = 15.216 kN/m*

From Aexibility method of analysis
Mg = 40.76 kKN m, Viggy (staich = 119 kN 4 8,368 kN = 20269 kM

d = 129 nun
K=—o = 40,76 = 10°]1000 = 129% x 30} = 0.0186
bel? fie
= K" =0.156
:-d[ﬂ.'i+.|,|ﬂ'!3——-]-ﬂ'?n'mmnplmlmmqummd
80.76 = 10
Ay = - = 877 mm* I (A iy}

H.H?f:,z ﬂ.EdeﬁDxﬂ.ﬁu 120
Astprovidedy = [T12-125] {Ay = 905 mr.nzn'mj

1
mindimam reinforcement are =013 = % w 160 = 280 mm? /m

As providedy = [T10-300] { Ay provigery = 262 mm? /m}
shesr w2269 kN
po= 2350 w0 1w 1000 w 120 = 0157 MY mme
100A; 100 x 262 1004, 177 ¢ 400, 14
= = (.33, = (L7 —
bd 1000 = 129 “f [bﬁf} {J)
= 0.5 M/immt

by = 1000, d=129 A, =9%5 mm
II|r 173
For M) grade concrete v, = El.ﬁ[:E"') na shear reinforcemenl required.
= .56
Check deflection:
A
fom g, Datreglred) _ 2o 24 Nimm?

3 Ay {provided )

M 40076 = 108 2 a4
bd® 1000 = 1297
477 — 2ZR 24

madification factaor = L35 4 W e |26 = 2.0
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Cancreba;
Density Oy = v, = 2400 kg/m’

Pen =7 Nimm?
Pee = 5.3 Nimm?
Shear v =107 N/mm?

Avp. bond stress = 0,83 N/mm?
Local bomd stress = 1.25 N/mm®

Mk steel:

Per o= 140 N/mm*

Pre = 129 Mimm?

Spine beam:

30} mm ¢ 200 mm deep % 3.1 span bower flight

1.5 m span upper fight
Treads:

0B84 = D076 m= 1.1 m

Imposed load = $10 kg/m*
Landing slab = | m x .73 m = (L2 m

SOLUTION

Sizirs om spine beams wiing elastic method

Loading:

Treads 1.15 x 0.84 m x 0,076 m = 2400 kg/m® = 176 kg/m

Spine beam 1.25 = 0.2 = 0.3 x 2400 kp/m® = 180 kg/m

Live load 0.84 m » 510 kg/m* =428 kg/m
- T4 kg'm

In 51 units 748 = 9.81/1000 = 7.6% kN/m
Stairs:

d':Etl'.tl—dﬂ—%:: 147.3 mums

7
L cebd® T o 300 s 14750 « 100
Hg:l'mmn.gmmt:F o

4 4
769 x 312
M.H,.;.:d=+ =9.25 kN/m
M 9.25 = 10 s
s =ML A s ey — T

F-?.ﬂx?-]l.‘?iﬂ

o 119 % 107
¥ = 300 = 147.5 « (LRI
a pominal sweel s reguired

1.9 = 10°
Iocal bond stress = —“h = 0,66 N/mm?
300 x 117.5{—}

=0.333 Nimm® < 0.7 mm

= 083 satislaclony
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steel bars in beams: together with stirmups

2R12 (A, == 126 mm?)

IRIG (A, = 603 mm’} = 829 mm®  RE-125 centres

Landing:

Canlilever beam in depth of slab 30 mm wids = 200 mm desp

Ry = reaction from the upper flight = 172 « 769 x 3.5 = 13.5 kN
R, = reaction from cantibever slab = 1 x 0UT5(002) = 2400 kp/m?

= 360 kg
. 383 kg
alab 1 mox 075 m o= 0.2 m+ impesed § < 075 = 510 = 43 kg {iotal 7.28 kM)
T.24 x 4 81
w R = ———— =728 kN
. 1000

My =78 =054+ 135 =058 =1147ENm
Moy — Mg = 0,06 kN m

b = 10" 3
Aw = RS oy o
11,41 » 10F 0.06 x 10F
Ay = = T41.5 mam?
L M 19752075 1N14T5 - 52.5)
| Cantilever slab
075

Mg = 728 x - = 273 kN m}

Total A, =905 mm® [4R]16 (fop) = A, = 804 mm?)
{2RH (botlom) = A, = 101 mm?}

Mo r I [ P
bl 1000 14750 =T
LT = 1P

As =135 mm® RE200 (A, =1231]

T 140 x 1475 = D.0R

check critical shear for landing column diameter 300 mm
shear force = reaction (rom upper Righl + reaction from lower Mighl + dwe o cantilever
alab

3.
=115 E.N+'.f.ﬁ'}% +TH=2=135+119+ 1456 = 3069 kN
3969 « 1000
= i T ——————— ] | i 2
v = shear siress 300 + 200) = 200 (L1ZT Mimm
= 0.7 Nimm® QK.
w00
4

column ares = T =70.7 » 10°

Lioading:
upper and lower flights 4 slab = 3965 kN

3
2.5 m » TN 2400 9.8

&1
i —_— = 4T kN
v WEEN 50 1000 " 000

Total = 44,13 kN

AT 16 hars = B4 mm*
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F = poede + Preloe = 5.3070,700 — B04) + 125 x HO04 = 475 kN
= 44.13 kN

main bars: 4T16 saislsciory, OF.

Stirrups: R8-200 centres

EuroCode 2
Based an details given in Appendix 1, the design given in this example is sale,

EXAMPLE 5.6

In a pewly-buill bungalow, & ROC free-standing staircase Figore 515 §s 10 be designed

and construcied in 2 space specially reserved for i. The internal dimensions of the |

room are 10 ft = 18 ft (1048 m = 5.49 m). The height from the frst w the second
floor i3 13 ft (3.9 m) As shown, the staircase shoubd preferably be in teo Highis. The
landing beams are to be constrocted and on them the slab resis. Use [5 456 (Indian
Standand Institse) and the following data for the design of the statrcase:

Steps 4-67 (1.37 m) wide

Hise = 6.5 inches (165 mm}

Slab thickness = 6"

External walls of the room 13.5 inches (343 mm)

[, (concrete} = 750 psi (5.171 MN/m?)

Landing beam (9"} wide and slab 4" span and 4" thick
Imposed load = 100 Ib/ft? (4. 788 EN/m?)

Flan projection of the stairs.

Ji trein) = V8,000 pai {124 kM/m?)

i =10872

SOLUTION
Slaircae in concrete For @ bungalow wimng elashic anabysis
Mote: 1" = 25.4 mm; | kip = 4,44 kN; | fi = 0.3048 m; 1 ibffin® = 6.895 N/m?.

e

Figare 515 . C.
bungalow staircase.
a) Plan b} Sectional elevation
| Mighl  up—]
landing
- — = flight
landing [ . I
| - andi
- eamn
¢ flight | ¥ L
i
&) Tread and landings disensions

1a-10*
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Mo, of fight =12

Height available per flight s 13/2 = 6 U6 in

MNumber of dser per flight = T8"/6.58" = 12

Mumber of treads per flight =12 - 1= 11

Space availsble per treals = 18 = =4 = WY = 120" == 3,074 m

Hence esch tread = 124/11 = 117 wide (280 mm)
{A) Stair slab

heam width given = 9" {229 mm)

effective span of the slab = 121 + 9 = 130" (3,302 m)
Lesauds:

distance AR =/ (11* 4 6.5°) = 12.79" {325 mm)

load/ it run = & » 12.79 = ﬁ = B3 Ibiify (1.211 kM)

_IIJ-cEl.S 12

load duc o iriangular portion = ———— x =3% Ibf/f (0:57 kN/m)

desd load = B3 4 39 = 122 Ibifft* (5.84 kN/m®)
fotal Jond e ow e 122 4 100 = 222 [WORT (10,63 kN/mb)
M (using Bexihility method) = 39,500 in Ibf (4.463 kKN m)

when a 12" width of the K. C. slab 1% 12ken
Mo 12647 = 39500 . f = 5" (127 mm)

" 1 .
Dy = ozl depth of slab = 5 +ﬂ'IS+Eﬂlalfdmnc1cibw]

- " (152 mm)
30, S0 . .
A, = area of steel = ———2"00 ____ _ (1.5 in?/ft width
o e = 18,000 = 0.875 x § .

I iy? .
2 bars with pitch 122(5) [0.5 m 4,707 (114 mm) centres

[R12-100 bars A, ypruvided; = 377 ma (]

disiribution steel 205 of the main steel = 0.5 » %

=010 in® (645 em”)
) n e
FI1|:’I,'.|'I1I|I Il‘:’: LY = 585" {147 mm}
use 0.25" & bars at 5.5" centres [RE-150 Ay (providedy = 335 mem?/m]
{B) Landing slab
diead load for 47 thick slab = 48 Ibfiin®
imposed Joad = 4 = 100 = 400 Ibf/ft widih < 850 1bf adopied
]

imposed load = —— =313 /¥ (15.0 kN/m®)
w = load on slab = 213 + 48 = 261 If/R2

““"""“”""é w 28] % 4% % 12 = 160 bn B 071 KN m)

. Mo .
d = effective depth = Jm = 205" (52 mm)

Dy = total depth = 2.05 + 0.75 + 0,125 = 293" < 4
adopt effective depth 4.0 — 0,75 — 0125 = 3.1%"
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L]

= =0.13 in?
1800 x 3.13 x 0872 '

Ay

" . T 3 1 -
= 12— . m— e
(L25" & bars pitch 124 w .25 x TXE 32

adopt 0.25" § bars at 4.5” centres [RE-100 A; (proviseny = 503 mm? /m]

H)
distribution steel 0,13 » i 0026 in
ik = 12x » 0.25
PR = 0 o2s = 4

Adopt 0.25" ¢ bars ot 12" centres [RE-300 Aj gpeovided) = 168 mm* /m)
{C) Landing beam {(Fig. 5.15(c))
97« 1R section

= X174 = 117 (305 mm)

reaction from siar ioads = 222 = 10.52 = 121 16l (1641 kN m)

Landing loads = one half of the load is borne by the landing beam
and the odher ball is taken by 13,57 (343 mm) wall.

1
=3 x 260 w 4 o 322 16F (2.322 KN)

self weight 187 = 197 — 9" = 4" of the shab = 126 1bi/ft (1.84 kN)
total load on beam = 1210 + 522 + 126 = 1838 Ibi/ft

L1 = effective span = 10 ft + 9 inches = 10°9"" {3.28 m})

M = 0125wl =321 = 107 in Ibf (36273 kN m)

Since the moment is small. it can be desipned a5 & recisngular beam. [n general, fos
large moments T and L beams should be considered.

r I||311 w 1

V%55
Dy = 1682 4 17 cover + 05" for a bar = 18.32 = 18" assumed
"« % section (229 mm x 483 mm)

incrense in load = 9 Ibdfdfi (L1327 kiN/m)

loaditeg = 1858 + 9 = 1847 IV (273 ENVm)

= 16.82"

M o= 321,000 = E:'I.B.flnl:.lil in Ibf (36,55 kM m)

1858
[ M

ViZEx9

= 16907, Dy = 16907 + 17+ 05" = 18,40 < 197 (483 mm)

N 323,500
TO1R, 000 x 0BT w 175

mxlixd
4 = 4

51 comparable 4R16 [A; proviteqy = 504 mm? /m]
Check for shaar:

d=19-1-05=179", A, = 117 in (113 mm?)

d— (5B dbars, A, = =1.23 in?in

Virn = 1867 x IEH == U335 bl (41.52 kN)

pEH]

LA e R W
bjid 9 x 0872 = 17.50 "

1 = shedr stress =

= #62 KN/ m?
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i, = allowwahle shese siress = 01, = 0L = T50 = 73 b int

= 67 [bifin? (462 KN/mY)
The steel 15 adequale [or shear,
Check for bond stress:

. W 9335
h = — =
Lo -ir:% x (LETZ w 17.50

= T8 Ibf/fin®

= 573 kN/m?

Allowsble: siraightened bar = 0.1 f, + 25 = 100 Ibf/in?
= 78 Ibf/in® (573 kN/m™)
booked ended bar = (0.2 f, + 50 == 200 Ibi/in?

= 1379 kNt

the reinforoement is adsguate.

EXAMPLE 5.7
The stringer beams of SC5 tvpe of 4 m span and spaced a1 500 mam centres are used 16
suppot a staircase. Using the following data, design the solid sininges beam in timbed:

Dead load = 0.6 kN/m”
Ienposed boad = 5 kM/m? or 9 kN concentraed load
Bending parallel 1 the grain = 10 N/mns?
Compression perpendicular to the grain = 2.8 N/mm® (withoul wane)
Shear paralle] to the grain = 1.0 N/mm*
E {modulus of elasticity) = 7100 N/mm® minimum
ar s 140,700 Nimm? { E-mean)

SOLLUTHOMN
Timber stringer heam

dead Joad = 1.2+ 1.0 = 1.2 kN (udl}
imposed load = 5 x 4 = 1.5 = 9 kN concentrated or 10 kN {udl)
long werm = L2 0= 1.2 kN (udl)
mediam erm = 120+ 1= 112 &N {odl}

ar = 120 + 2 = L2 kN congentrabed
grealest siress and deflection: coefficient £y = 1.0 long tesm

= 125 meedium term

long lerm loading = 1.2 4 1.0 e 1.2 kN [udl)
medivm loading = §1.2/1.25 = 8.9 kN (udl)

singe the spacing = 610 mm. the load shaning modification Fector

k=11

man. allowakile = 0003 x 4000 = 12 mm: Epgge = 10,700 Nfmm?

£.0 5 11,200 = (400017
M4 = 10700 = 12

A sipe T8 = 245 mm would give o bending defiection as

| = = 727 = 10F mm®*
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Figure 5.14. Reinforcement
in siringer beam.

|
{

5 = 11, 200040007

= =9‘.¢'§|Imn
b R4 = 1000 = 91.9 = 108
Il
by, = additional deflaction due to shear =
A} [l L & b
Fow 10,200 x« 40K

= (.55 mm

= 0 x 669 x 75 = 245
3 = iotal delflection = 949 4 0.35 = 10.04 mam < 12 mm
300

LA
The modification facior K7 = (ﬁ) = 1.0225

Bending parallel to the grain = 1.1Kg = 1.25K3 = 1.0225K;
w1401 Mmm?

Compression perpendicular to the gram = 2.8 = 1.1z = 1.25Ky
= 3.85 N/mm’

shear parallel to the grain = 1.0 x 1.1Kg x 1.25K3 = 1.375 N/mm’

irF 3w S0

Ibd 2w 78 = 248
< 1.37% N/mm?® OK.

Bearing stress as the suppori:

The length bearing is 100 mem a0 the ends of each sirnger

S0
I = 75 mmy

shear af the suppart = = (1457 Nimm?

The hearing stress = = 0,74 N/mm?

« 385 Nimm? OK

EXAMPLE 5.8: Explain the space trasy theory for concrete tehjecied 10 torsion

An pnsymimetrical reinforosd reclangular section of a stringer beam supporting & stair-
case 15 shown in Figure 316 From the analysis, the sinnger beam is found o be
subjectsd o & wrgue of 70 kN m. Show thet the siringer beam is safe and the rein-

forcement is adaquate,
320
2w

~_ AT

R

515
530
fEH)

VAN (NN

| as0 |
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Figure %.17. Explanatory
deagrams for space truss
1heiry.

U'se the following data:

Fir = yield stregses
= [or 10 mum & bar 250 N/mm®
= fur 20 mm ¢ bar 280 M/mm® | R oype
= for 3 mm ¢ bar 300 N/mm?

by = 11[3:L|+Jlﬂ] =315 mm, 4 =515 mm

By = 55 mm, fy = 550 mm
ug = 2iby + di) = [ 660 mm, Apm bydy = 162,225 men’

s TS mm,  fipe o 300 N/mm®,  fipe = 250 N/mm?

A
Acter _ 362 N/mm?, foy = 250 Nfmm?

SOLUTION
Application of space inss theary 1o concnete under lorsion
{&) Explanation

Close spacing of longifudinal hars on all fzoes is considered 1o be superor in resisting
tarsion. It is also helpful in contrelling the width of the orsional cracks. Figure 17(a)
shows a rectangulas eross-section with leagimdinal bars disteibued undformly on all
faces. In the space truss theory il is assumed thal the concrete core is nol ellective
ard Ehsl the compression disponals are due to the concrete shell. The solid rectangular
seciiom, therefore, behave like a bollow section. The aquivalent hollow sestson 15 shown
in Figure 17(b). The effective wall thickness of the equivalent hallow section is then
computed,

a) Section b} Equivalent hollow section
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It is possible For the longinxhingl steel o be placed ansymmeinically with reference
o the homzontal axis. When the torsion i accompanied by a bending moment, the
longinsdins] steel near the teasion face is greater tham that near the compression face

Hence in that case, two types of bars need 1o be considered as shown in the fipure.

Il the cormer bar is disumed 0 be eqoally divided bebwesn the two adjacent faces,
the total area of the longitudine] steel in the lop, bolttom and wertical plane trusses
(Fig. 17ic) for space truss) is 314 mm?, 706.5 mm® and $10.25 mm?, respectively. The

comesponding feld loads are §7.92 KN, 211.95 kN and 149935 kN, respactively

{B) Flane bruss ol top [soe

Tu = 240 farfiny ¥ s foy g e ip
lyxs

wheere Ty = the ultimate woque based on the wrslonal strength of the top.

If ay, 15 the angle of the compression diagram.

AF s 47,920
g, =200 T LA ess
= e “af, 315 22
@) = 44.1°
Sweel stresses due o tosque of T kM m
(C) Distributed longitudinal bar
Tan = 245 | 2L O Si) _ 333 3 bt 0K

Iy o 5

fowr cormer bars

ajg fivy + ik fiby .
14y

(D) Flane tnass af the botiom face

i .ﬁ'b:! " 'rf::!
fa. i

x, (21,9500 1 m
mm—[—jlﬁ T of @ = 31
0w 107 = 16025

fip = g = 154.1 M mm® 0K,

13
Ty = zrm[ = :’"] = 199.4 N/mm® OK.

112
Tuk = l.iu.[ ] = 1362 KNm

1= IEZ.ES:- ﬁ
, 0 = 10
fi {bottom horizontal legh = i.rsn
Ix m.m{i)x 16025

= 1284 Kimm® OB

{E} Plane tnass ai the vertical face

T =24y [W—J‘ﬁr" u ﬂ—"ﬁ’] .
b] El

Tap o Ty = T,

colay = (HEL'!BS) . N or ay = 43.5°

515 262
0 = 107

i (venical leg) = = 1953 Nimm® O,

2w 162225 = % w 1,541
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{F) Trusa thoory

Il the same longiodinal reinforcement is distributed along ihe four faces, the ultimate
fongue 15 given by the equation,

T, - [,zf-llr_.rlr-. 4 dip figy . G fer

[ P &

12
] =MW kNm

Hence a reduction factor of B7.7/99.8 = 0.879 is inroduced due (o the asymmetry of
the hmgitudinal stesl.
Corner bar: division beiween the longer and the shomer faces in the ratio o /iy

Top Botiom Vertical
Area {emd f mam) 04627 1,702% 1.3255
Yizld load {M/mm) 129.6 51075 3613

The oHimate wngue 2 the wop (1296 MNimm) ax o lowest valoe, the valve of T, =
T6.4 kN and the reduction factor s 764,908 = 0.T66.

The stringer can take the witmae wogoe of 70 kKM m oo the basts of sllowable stresses
and other parmmeters given in the datn Stresses from axinl effects and pure bending
as described in previous problems should be algebraically added to these stresses from
wrsional effects

EXAMPLE 59
The sieel siringer is lateraily restrained al the ends and & points where the eactions
froen ithe stair panels occer as shown in Figure 5.18. Using the following data, check
the siringer for bending. buckling, shear and deflection:
Data
Point loads: at B =3 kN

W C=2kN

Selfl weight = 1 kN/m
E, = XN} GM/m?

¥ = 1.6
¥y = 1.4

Figure 518 Stringer.

a) Staircase siringer b B. ML dizgram (shown resreve]
FPy=121 Py=T7.6(kN) —

R,= 169 0N L1500 [BISM [cuﬂﬂ
| 4500

¢)) Shear farce diagram
16.9
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Buckling resistance
My = buckling resistance momen = S,
Ref. BS3050, Table 5.5 for p, = 275 N/mm?

kiT = nuvk = X347

# = huckling parameter = (0L.B46
x = lorsional mdex = 14,10
ro= 1.0

py =275 N/mm?

oo 2R G

&
py (Table 5.5) = 275 N/mm®  » = 0.96, 3= L1035

My = 275 % 652 x 10° 5 107% = 1793 kNm > 20.739 kNm
M = Mp the selection s adequate for the lateral worsionsl buckling

resistance,
Deflecion
The imposed load is withoul safety faclors
1B = 129
a a—-:T=2H}ﬁI:N. By=41kN
) By o= 17 kN
actual deflection &y
20,06 x 10° = 45000
b = 00 % 107 % 90 I i
Lo, spam 4300
defleciion limit 8, = o = e ™ 12.5

by = By the stringer is adequate for deflection,
Finite elemend analysis

Solid elements = 59,
Analyas sleps = 5.
Factor of safety = 3.16.

EXAMPLE 510

Two stringers 177 = 14" support 8 3 slab of the fight spanring 20 fi betwesn the ground
foor and the first floor. The stringers are at & fi centre o centre. From the fexibility anal-
yeds (L = 20 fi). the maximam positive and the negative moments are D.ﬂﬁll.uL} and
0.091wL], respectively. Using the following data and the ACT 318.1M89/3,1BRM-89
{Revised 1993) Code, design the reinforcement for the siadr

Imposed load = 3 kip/ft

Do bl wm ] kip/fi
Parial § & =17
safely fadtor | b = 1.4

I = 000 pai

Sy = 60 Ksi

w = aiform load

The siringer is assumed to be cast in-situ with the 37 slab of the fight. Assume tha
the torstpnal effects are incloded In given moments.
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SOLUTION

Stair design using the ACT Code 318-89 (Revised 1992} maximum depth of beam 207
Mote: 1in s 254 mum; 1 Kip s 4448 KNG 1T == 03048, 1 Ibéfin® = 6,895 Nfm?,

Mpp =3 x L7I0Y = 12 « 00625 = 1530
Mpp = 1.0 x 140200% x 12 = 0.0625 = 430 positive moment
Tatal = 1950 in kip
Mpp =3 L7200 = 12% 0081 = -2225 negative momeni
Mpe = 1.0 x 1.40200% » 12 % 0.091 = —610
Tosal = 2835 in kip

Since it is cast in-situ, flasge wﬂb:i—xspan=ﬁl}"

d = effective depth = 20 — 2.4 = 176"
M, 195 = 10*

pbd? 090 % G116
ky = Bexural stremgth coefficient

17

ky =

Mepative nsoment with stesn widih = 14" and d = 1767

i = effective depth = 20 — 24 = (76"
b= .H“7= 2835 w1t 9
dbdZ 0.9 x 14(17.62

Ref: ACIL 318-89 (Revised 1992)

ke (positive) = 117

2= 4000 psi
200
Pain = 000 — 0

Pacmal = LOOZE =< 0.0033
Ay = 00033 x 176 = 60 = 1.52 in
As providedy = 27 120 in®

W0 2840n"  Total Ay provides) = 3.74 in?

Checked for shesr and deflection. The stair has adequate provisions,

Finite element analysis

Solid elements = |18,
Seeps for the analysis = L5
Faetor af zafery = 331,

EXAMPLE 5.11

Comuec modment. oasion and shear for a helical staircase using the Bergman approxi-
mate method and also, using the following data, design the reinforcement for the stair.

# = inner radios of dab of the Nigh
B = width of slab of the flight =5 h
I}y = wverage normal thickness of slab of the Qight = 8.5
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268 = podal angle sublended = 1307
) w central radies = 7.5 £
live load = 100 [b/ft* on horzomal projection

dead foad including selfweight 175 1b/ft* on horizonial projection stair height = 12 ft
k=063

SOLUTION

Hehieal strcase = Bergman's mechod, ACT design method

Nate: 1" = 25.4 mm; 1 kip = 4,448 kN; 1 it = 03048, 1 Ibi/in® = 6895 N/m®,

w = otal load!fi = % = 275 = 1375 Ih/ it

R I
- = Fatio of the Might widkh 1o thickness = -

r .5 =106
K = (L5, 6= a5°
i
MG+ 1) s8n6s" — 2 = 063 8 — cos 657
(065 + 1) —— — (.65 — 1 5in 65 cos 65°

5713
M= 1375 = 755108 — 1) = 13,022 fuibf

a al mmn-n-ﬂ“-%mLﬂumﬁm

sinl = 09063078,  cos® = 04226183
Miyppon = wrl(U cosa — 1) = 1375 = 7.57(1.18 = 0.4226183 - 1)

= —38,773 ftlbf
T o Myjppery = wr (U sine —a) = 1375 » 7.5% = (118 = 00063078 - 1.1344)
= w3024 fi If

Vigppon. = wr] = 1375 = 7.5 = L1384 = 11,6985 Ib{

Diesign of the sixincase

In order to distribute reinforcement correctly, similar values of M, M, and V' can
be computed al Figore 5.1%a) for various values of o. Here the AC1 Code of practice
(ACK 1994} is adopeed. Fipure 5. 1%(b) shows warious diagrams wihich fake inbp acoount
bending, torsion and shear. Deslgn calculations ase similar o the ones given in earlier
problems, The final reinforcensent details are shown in Figere 5.1%e).

EXAMPLE 5.12
A helical statr beam is subjected o pure forsion and has the cross sectional dimensions
shown in Figure 5.20, Check that the reinforcement given is adequate: for the following
conditions:

n) torsional cracking resistancs;

b orsiomal stiffness prior io cracking;

ch the factoned torsional resistance of the section;

dy torsion stiffness after cracking.
Dwata
S =30 MPa

k= lorsional factor = 1.0

i, = torsional resisting factor = (L
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| E[1] |
150

T
RI0-150
500 380 | R0
L Tlém
Figare 5.20. A helical stair Commer
beam. — —_—

G=11E,-=5EIIIJ--"3_I:I3%=13.T'IJRU:]3]-LFA

GCgrues = 38.3 » 10 N/mm?
Factomed torsional resisiance T

A, A Iy
= J0.28 kN m

A
Ap = sheas fow path

Py = perimeter of Aap

Ay om0 Ay ow= ared of traoverse reinforcement

Check
a} longitudingl areq of transverse reinlforcerment

a o APy 791224
==

grea provided = 4 x 201 + 2 « 79 = 962 mim?

#: 645 mm?

b} mimimuam &nea of ransverse reinforcement (BSR1 1

= % of grong section

=HE{EEJH;—T-!W} e= 16 mm® < 962 mumt

Moler:
by = widih between stirnips of links centre line
= 180+ 10+ 16 = ¥ mom

hiy = depth between sumaps or link centre line
= 380+ 10+ 16 = 406 mm
area { A enclosed by stirmup cemire line
= 20 w 406 = 83 « |0F mm?
p o perimeter of Agg
= 20206 + 406) = 1224 mm
Ag = shear flow path = .85 Ay = 71.09 = 107 mm?

I 3
Ay or A = area of ransverse reinforcement = 79 man®
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Based g USA Code
L35 = 3000 = |50
6l
Aymor = 2 % 79 = 138 mm?

= .24 mm?

Ay s =

¢ adequacy of section dimensions

0.25hd, f] = 0.25 x 1 x 06 » 30 = 4.5 N/mm’
TPy 2928 x I0F = 1224

—_ =52 Nimm® = 4.5 N/mm* not OF.
Ay (83 10°)2 =

The nominal shear stress is excessive. Hemce the nominal shear stress caused by the
disgonal compression failare in the concrele controls the design

a2
T, gﬂ.nmq:,f;ﬁ" % 1079 £ 2533 kNm

Tpm= 25,33 kN m 15 the factored (orsions] resistance

Finite element analysis

20 poded solid elements = I,
4 noded bar elements in the body of the solid elements = 10,
Factor of safety = 1590
EXAMPLE 5.13

An archatect drawing shows the basic layout of the helical staircase as shown in Fig-
ure 5.21. The stalrcase has to be designed in reinforced concrete, Using the following
additional data, calculate wanious momenis and shears im the staitcase and design the
reinforcement al vasiond levels,

a = ¢ = slope made by the tangent to belix centre line with respect 1o the borizoenzl
plane = 25
Fi, Ry = the radius o the inside of the stair = 09144 m
= votal are subtended by helix = 240
B = width of smir= 1.1l m
rowm Ky w radius o the extemal side of the stair = 2134 m
Dy =k = minkmum thickness of flight = 130 mam or 100 mim
gL o wyi = superimposed load = 2873 kN/m®
0y, ¥ = denaliy of concrete = T34 kKN/m
few = concrete cube strength = 30 8imm?;
Fy = yickd strength of bars = 250 N/mm? or 460 M/mm?

SOLUTION
Heblcal B. C. staircase — Morgan's method

B| = rp = radius to the centre ling of load

1| &} - R
= = — | = 1.603
l[ﬂs—xf B
R = %{1.131+&91u}a 1,524 m
il = .05, B = 122 =122 m

L Dy 0100
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My = vertical moment abpol the bosizontal axis

= Mpcost + H K6 mn ¢ sind

- wR{l = cos )
a8 =1, =25, My=-1TITkNm
8= 1H°, & =125, M., ,=2730kNm
My = Ty = twisting moment
= (M sin b — Hﬂgﬁmﬂmﬁ-l-wﬁf gin A — ar Ry Ry cos ¢
+ H Rz ginBsing = 7488 kNm

My = laberil moment

= Mpsmnbsindg — HEpoandcosdelnd — H By sinbcos &

+ (wh] siné — wR) Ryf)sing = -37.683 ENm
MNote: for My (Ty)and Myy 8= 1MF, § =25
Foy = thnst = —H sinbeos g — wR8zing = —23.843 kN

=14, ¢=15

Voy = shear foroe acrods the waist of the stairs

= whifcosd — Hsindsing = 18934 kN, 8=120°, ¢ =17
¥iy = radial horizantal sheanng force = B cos &

ar & =1, Vﬁ;:H:ﬂ.ﬂlm

al B V207, Vay = - 14,134 kM

On the basis of these eguations and the given parametsrs, geaphs e deawn for vanous
values of M5 and ¥'s, They are given in Figures 5.23(a, b,

Typical design calculations

M = M, = My = momenot io 2 tangential direction

=372 = 10* kN m
d=100-15=12=65m
M 2737 x 10P

k= = = 01T <« K = (L5516
bl fm  1Z20(65) x 30 =

No compression steel is required.

k
s = ' 5.__|= 9 :
d|:05+1'l02 s {15984 = (.95

adopt ¢ = 0095 = LT mim

2727 = 0P

Ag iprovidesy = [R12-300] [A, = 377 mm? fem] or [R10-300]

[As = 262 mm?/m]

Mindmum srea 05 = 0.24% x gross sectional area of the flight
= 240 mem? /en

[RE0-300] [ A ipeevidedy = 262 mm? fm] OK.
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a) Yaration of momesis along stair

55—#._____‘

—l

Vialue of bending & torsional momend (BN m)
]

. b
-1% \
=20 -\H FE.
-7
34 e
-120 90 60 30 0 30 80 90 120
b} Variation of shearing and thnest along stair
16
\\_ Bnm
! H\. ;"f’ i
T o ™ A
2 P i N ///’r(
- v
2 N\
P ;
¥ — ]
g - Y\\{"l
H K \F
] N\ )
27 N
S
-3 N
~
-120 %0 60 30 0 0 80 90 120

Figure 5.23. Morgon's and finite element methods - A comparative study of shearing and thrast {x - Finite Element)
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Cracking duc o bending:

In order to ensore that crack widihs do not excecd the mavimum acceptable lindt of
L3 mm

@) for grade 250 sieedl Dy or & = 150 OK.
1004, 100 = 2462
b 1000 = 65
a ideiziled cracking analysis is needed.
The clear distance between bars: 1he lesser of 3d = 195 or 750 mm spacing 130 mm
betwieen bars 15 adogied

L1 w (L4 =3

Shear:
Ubtimate shear = 18,934 x 107 N Yy
18,9 i
v = the ultimale design shear stress = —Smi{;ﬂ = 02913 N/mm?
A
— = [L24T
by

The allowable design shear stneas = 1
VKA, 173 [dﬂ:lll'd'_:l”‘
byl a
Yo = 1.25 fowr grace 23 concreie.

1%
for grade 30 concrete V. = U.d}][%‘] 2 (L45 M/mm?®

V= n.ﬂ[ ] = (1433 N/mm?

since, v = (L2913 Nfmm? < v, = 045 N/mm®
Mo shear reinforoement is needed a2 present under a pare bending condition.

Moy = 2730 % 10° Nam, K = 0176 < 0.136

Ircredse Oy 1o 125 mm with d = B mm
K = 01033 < 0.156 nov compression steel is needad.
Mo significant change ocours in the calevlations for shear o load on the Aight

1033
p=d|05+ | (u.zs - m) = 0.867d < 0954
¥ 0.9
r = 14 mm
o WWax 108 . 2
-lql(n;q.umdl = fl—ﬁ'-"[-ﬁﬂ] T = X174 mm

[
As groguires) = 3= % 2274 = 1564 man /m

T20-150 [As imquinedy = 2094 mm? (e}
M,f=31.ﬁﬂ.a1ff' M mm
d = 1220 = 63 = 1157 mm
_ dlee 1
151157130
r=0.9534 = .95/
Tuke £ = 954 = 1099 mm

MEE 1P ) .
As trequinedy = G008 " T e mmtim

Adopt T20-150 as before

o OLO0G255 = K" = 0156




Hidden page



Hidden page



Design examples 257

Figuare 5,25, Torsignal
s Stamos,

Figure 5.26. Cracks with
diagonal tension

orsional Agidity = GO
where & and © = torsional siffress
values of shear siresses in design for torsion are given by

Ve min = 006715 but vp e = 0.4 NSmm?

e = 0872 but 1y > 5.0 N/mm?

A concrede siircase sobjecied io torsion generally fails as the resali of diagonal wension
and cracks are formed in & spiral asound the alab, The action on each face is similar
tor the vertical shear in a beam. Reinforcement (of the torstonal resistance of all links)
crossing the cracks is given by

ﬂ-“f:u-";u (ﬂ + }'lII)

2 Iy Sy
thus the wrgoe s given by
T= n.s‘m,a,.? !

where, ry, ¥ &re the dimensions of links
Ay = area of two legs of the link; fo, — characteristic strength given on the ok,

The crack is assamed to be ot 45° (Fig. 5.25)
The cxpression given in the BSE110; Part 2, clsuse 2.4.7 s
Ay T
— T ———
Ty u-ﬂ-‘ﬂ'l {11 E?.r:rb}

A safety factor of 1/0L8 has been introduced.
Armangement of reinfosoement

. Sy = link spacing
|
n GZ
"
. P J
I

e —

!
!

—————



258 Design analysis and structural detailing

The clesr distance betwesn longitudinal bars reguired 1o resist toosion shoudd not
exceed 300 mm. At present the spacing is 150 mm. Hence 9 bars with & theoretical
area of IR0/ = 42 mm? per har sre required, For botiom sbeel

As prequisegy = 2274 + 2042) = 2358 mm’
A iproitedy = T20 bars = 226 mm-
for top sieel 5T20 bars = 1570 mm® > B4 mm® as top bars in bending were not
el
This arrasgement méets the CSA oode requirements as well. Figure 5,22 shows the

struciural details of this type of suircase.
Finite element anslysis

Linparametnc 4 MNoded

Mo, solid elements = 2500,
Mo, hars matching sohd elements (2 noded] type) = KL
M. bars in the body of the element = |50
Load types

Mo solation 1o fatlure =11.
Factor of safety = 15

EXAMPLE 514

A helical horseshoe 1ype staircase is o be designed uiang the tao codes BSE] 10 and
DI (04570 0B

SOLUTION

Design of the horseshoe Dype siaincae

{i} Based on BSEL IO

The losd factors ¥, = 1.4 snd yp = 1.6 are taken into consideration in design of
such & simircase. The design calculations are idenbical o Example 5.1, the final design
drwwing is shown in Figare 5.27

{it) Based on DIMN 105/ TN 1080

The design was carmied out by 1 Von Winter tn Edfauterungen ra DEN 1080 Bang:
Grondlagen VI, §44 Seiten ISBN 3-433-00769-1
Publizhed by W Ernst & Scha 1977

The final design drawing is given in Appendix A2 115

——— e e e = L———

; EXAMPLE 515
An ellipto-helical B C. sisdrcase s 1o be designed. Using the following data, snalyze
the stair and prepane a aselnd drawing showing vanouws remforoement detals:
iy = stnircse height = 766 mm
.l:: 'F:

Ell = —= =1

kipsc in plan -3 + 5
iy = riser = 190 mm deep 14N
o = 10 min = sbeps width
Wizisl thickness = |50 = Dy
Width of the staircase = 0.86 m
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APPENDIX |

Supporting analyses

ALl SHAPE FUNCTION FOR THE FINITE ELEMENT ANALY SIS

ALLL Eight-noded membrane element (Barngash 1959)

Mode Shape funciions Derivatives

Ni(E, m) Elé:r ila:.
1 H1—Epl = ni(—E=n=1) H = 02 + 1w =By + K
) =Nl —w —E(1—m) -i1-¢h
3 F+ENL —miE—n— 1) SO —nHZE — ) T+ B — k)
4 H1—nil +8) it —qt) —ni1 +E)
5 0L+ EM] + niE +n—1) {[i+1ﬂ[2ﬁ+n] O+ BNy +E)
& HI—EDil +q7) —E{1 +n) 1 -eh
7 =Ml +mH—E+n—1) 30+ n)2ZE —x) 301 — EM2n —E)
g F = nfail — ) ~§il=-nh —n(l =&

A2 Twelve noded membrane element {Bangash [959)
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Mode § Shape funclions Derivatives
N afy LR
NilE.q) E H
1 il — 6300 — ikt + 4 — }) ail-mize -2 —n?+ 81 Sl-pIn-dnP-g' 4
2 (1= &)1 = E5(1 - n) il —w)i3g? — 28 — 1) —%u—sm—s’z
3 il = ml — Kl + B E{l —nHl - 2% — 3% -mil -+ 8
4 gL+ B3] = %+ m? = ) fll=mi2E + 3+ n? = 81 gO+Bm-3ni - - i)
5 gl 31 = 9?31 = m) (1 = mEHl = m) {1 +E}an? = 2n = 1
6 1+ L= ML 4 m) 11 = 0¥l +m 5 (1 + 5N = 2n = 3nh)
7 il + B+ mile? + ? = 4] HO+mE+3 ¢+ - §1  fO+BR -+ +5 - )
B frll + npil — E501 + §) il + 0l - 28 = 387) mil =1 4K
9 (1 +mil =871 = §) Al + 3 -3k - 1) Al —E 1 —E)
10 il =0+ niE?+ n? = ) (i =3 = '+ ] w =D+’ -8 - )
1 il =830 = nhhl +m) — gyl il =) F{1 — E)1 —2n - 3n%)
12 fil = B = n?l =) e (L il — B3t — 2 — 1
ALLL3 Skape fimctfon fetrahedral element (Bangash 1589
Right tetrahedral element - -
Four-noded Modal & oW &
Coordinases: [T
MiEn D=1l -E—n-7 1 0 o
2 Nalk, n, 00 = +& 2 I a
Nylk, m. T = 4w 3 i 0
£ MNg(f, m ) = +E 4 1 &
Nodal Ei g "-'I
Ten-noded
N
Coondinates: N
NiE,m ) m 21 =& —n -1 ' v 0
~fl=k=n=0 : ! o
Nalkom, ) = (2% - 1% 3 10
NylE, 1, 03 = {20 - 1y 4 0 1 1
2 I
/ Nyl 50 = (% — 18 | : 0
—E—p— f } 40
NEnD=4E(l-5—n—0)
Neit. n. 0 = 4y LA
Motk n, 0 m dn(l = § =1 =) 8004
Nl n, ) = (1 —§ —n —©) ? 0 i
Nafk, . € = 4T w0 )

Nia(E. n. ) = 4nE
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Twpical example of a single staircase based on Eurocode 2

263

AL2 EUROCODE DATA

Loaded areas DL Con:. Yy W g
(kN/m®}  Joad
(kM)
Category A (domestic and residential
activities) general 20 20 0.7 ns 0.3
Slairs 3.0 10 0.7 0S5 03
halconies A0 10 0.7 05 03
Caotegory B {public buildings, gemeral 3.0 20 0.7 05 03
offices. schools, hotels) stadra, Baleonies i 20 0.7 0.5 0.3
Category C (assembly halls, thestres,  with fixed seats 4.0 )0 0.7 w7 (LT
resigarants, shopping aneas) ather 5.0 4.0 0.7 o7 (L1
Cabegory [ (areas in warehouses, general 50 7.0 1.0 [IL] 0.8
depaniment siores)
Combination Factods (MAL)
Warizhle actions Wy 0y W
Irnprmsed bosls Drwellings s 0.4 02
Offfices and siores T 0.6 03
Parking a7 0.7 L
Wind Inads a7 0.2 i
Snow loads i 0.z LI
Permanent (¥g) Vamiable (gl Wind
Laoad
combination Favourahle Undanvourable Faroursble Unfavourahle
effect effect effect effect
Permanent 4 1.0 1.35 - 1.5 -
warizhle
Permanent + 1.0 135 - - 1.5
wind
Permanent + 1.0 1.35 = 1.35 1.35
variahle 4+ wind

= partial safety factors for permanent sctions G
¥ = partial safety factors for variable actions @
Wy = combination factors for rare lead combinations
Wy = combinaton factors for frequest load combinstions
W5 = comhbination factors for quesi-permansnt load combinations

E Gy i+ E"il-rz.r'ﬂ't..'

whese i 2 1; (g j = characteristic vahses of permanent actions; {4 = chamacteristic valuss
of variable actions; W9 ; = combinatlon factos,
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AlZ TYPICAL EXAMPLE OF A SINGLE STAIRCASE BASED ON EUROCODE 2

The siafrs span longiadinally and are sed imo pockets in the twoe supparting beams provided,
The follrwing dats based on Eurocode 2 are provided:

Letinctive =3m

Treads = 260 mim wids
e ftective = 165 mm

ok = ¥ N/mm?
Fi = 400 N/ mm’
h = rize = 1.5 m
Risers = 150 mm

e = 5268 kN/m
Eim = 32 kN/mm?
Fk = 460 N/ mm?
‘Waist thickmess Dy = 2N} mm

e =3 kN/m

E. = 200 kM ! mm?
Yrg =13

Ponac = 24 kNfm’

For rare and guasi-permanent combinmiions of loads we tike
Wy =07 W=03

My (0.45d upper limit) = 0167 fopbgd®
. L?
Mg 5y mid span = (G + "'-:lL"HT

My
k= 0156 = &'
by Fop <

Siair slope = v 4+ T8 =33 m

by = wichh = | m of slairs for calculalion purposes

Weight of waist and steps = (002 = 1.0+ 0.26 = 015 = 1/2) = 24 = 5.268 kN/m
Imposed load = 3.0 kMN/m

Case A Ultimate load = 1,35 52684152 1.0 = 11612 kM/m (no effective end restraint)

3!
Case B: Migpg) mid span = (5.268 + 0.7 = B}E = §.I89 kNm

AL Case A

o = 257 _ 13055 v
130635 = 10°

" 1000 « 1657 x 30
{no compression steed i provided in the main spad)

= Q016 < 0156

7 =095d =095 x 165 = 136.75 mm

13.0635 = 10
A = =172 mm¥
i) e e %60 x 190 e
013

Minimum sieel = ]'Tu s 1000 = 200 = 260 mm’/m governs

Provide T10-200 me cenere [4; = 393 mm?/m]
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M, = 0,167 fobyd®
= 0.167 x 30 x 1000 x 1657 = 136.4 kKNm > 11.612 kN m applied OK.

A1.3.2 Case B
Mg = BIE9 kNm
E, 0
= = — = .25
Em 32
Mgisy 6w B.269 x 10 :
T heD] T 1000 % 2007 o
Sieel % (P}
50 "
=045 = = x — =021
P ﬂtll—ﬂi "
| = = w093
’ o
Misis BIE0 = 1 P
| stress - = 137 Ni
s 1 wlos '“e(:_ﬂ} 393 = 163 = 0.93 e
! 3
< 0B fiy = 368 N/mm” OK.
o = COTCTEE SIFess
2 x B2RO w 0P
IMois * 8289 = 3.12 N/mm?

- bud*a(1 - %} = 1000 x 1657 x 0.21 x 093

< (L6 fig = 0.6 % 30 = 18 N/mm® OK.

A1.33 Deflection

Earocode 2 Tahkle 4.14
L 3= 1000

d 165

= 15.2 redated 10 @ steel stress of 250 N/mm®

Corresponding to 400 N/mm® = fii  Table 4,14 is moltiplied by ﬂE where o, = steel
siress af that section. '

250 _ 400 Asgginny 40172

oy e Asipronidedy 060 393

%:D_Jﬂxn:u.]!

For simple span span/depth ratio allowed = 3
Both are bess than this valoe, deflection criteria is satisfied.

Al34 Oracking
Check the bar spacing needed 1o satisfy the cracking Case B for SLS

Dy = 2} is ai the border line i.e. 200 mm specified.
100A, 100 = 353
bd 1000 x 165

for HT steel.
Clear distance between bars muost mol exceed 3d = 3 = 165 = 405 mm or 750 mm,

At present the steel is T L0200 mm centre OK.

= 0.238 -« (3%
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SHPOFIRE amdivees

Ald STAIR STRINGER CONTINUOLS OVER TWO 5PANS EITHER 5IDE ENV-1Y

A reinforced concrete siringer suppons at eaxch end of the waist slab of the stair. The cross-
section of this arnger is T-shaped a5 shown in Figure Al.4.1, The span of the stringer of
this heavy duty siair is 8 m. Iniermediate suppon ks provided for the 16 m siringer. The loacd
on each sininger is 97 kM/m. Using the following dsta, carryout

ab A linear analvsis with redistribstion (BC-I, 2.3, 3.4.2).

b A ron-linear analysis (EC-2, 2.5, 3.43)

Learcr
concrele CHNWIT, = 30 Mimm?; g = 20 Nimm?

Reinforcing steel 300 fl = 500 N/mm® highly ductile
.r_l--n = ..r:nl =mH."TI'I'I113L feme =30 4+ 8= 38 H|'r|1r|1:
v LI, ¢, = 10 {withow! temsioning effects)

a) Linear anolysis

M.:-g?:s' = —T16 kN m
) b = redistribution facior = (.85
Figure Al4.1. A .
coalimous stringer for a Reduced bending moment = M, o, = 0BS{—T76) = —660 kN m
starrcase, placed &1 both
enids
a} bh Section A — A

r-ﬁ 97 k/'m (inclasive of pariial factors)

)

|
15 I
j‘ |!."-'; ‘ﬂ |C .rl_._
] B

m m
| |

!

dj

m
75 P\
: 0.5 .75

i
iy deagram
dhie b0 unil moment

445

58
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Check on the cross section design as proposed at suppon B

B&0 = 10
= 0106
Hadi = 305 « 7507 x 20
X
L2033 <048
ﬂ' =

Bigin, = 044 5 1,25 w (L35 = (RS OK, a5 dbove
Vid.a = Vai e = design value of the applied shear

—9?#4.(#—% = A0 kM

1_.'.
Mgy (mid span) = My = My = =& = ——— = 48266 kN m

b} Mon-hinear analysis
My g over the sapport B WFE assumed

Check on the rowstional capacity

Roduced B. M. at B = M), 5 = 0.T(=7T6} = <543 kNm

_H:"-!":F [, 161
Vade WO x THY x 0

3 = 0.263 (Table 7.1)

Looking al Figuare 4,15 of the code 85 = 0014
[resign value of the applied shear force

343
Vigoo = Vg o m 87 0 4= T-JEDW

Reinforcemen regaired

Jaf
=947
Ay [rogired) i 3pams (Tabde 7.1 of the code) = 17 con® (1700 mm?/m)

AT1-150 [ Ay provitesy = 2096 mm’)

Axregeired 4 B = 19 ¢m? {1900 mm® /m)
ATI0-150 [As grenidedy = 2096 mum?]

Brequiced (Using Simpson's Rule) Flexibility Method

Maximuam value M = Myp = =518 kNm

_ 2As |
TR kM ylx)

A = impernal @ the stringer taken o be 2 m
k = coefficient fAexibility analysis
Mix) = vartaal B

Moment = 1 & suppont B

]
—— = Curvarung at x doe o ied load.
i) : nia

2
Hpnguuired = ? « [L0O52S] = DT

Breguired ™ N7 < By = 0014 rotationad capacity is not exhansted and is OK.
Hence the size and the relnforoemeat of the stringer 1s adegquate.
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Figure Al 3 1. Fire
];rl:l:ll.:cl.im'l. analyias
of & siringer,

Mumerical integratbon

Poimts mix) M ™ kimix)1 /v
1 z 3 4 5 &
1 i 1 0 [H] 1] ()]
2 1 i 25 by LR Eed e ] OUZR2
3 2 2 0.5 S04 (L) e ] R0
4 3 ! 075 174 D11 [ERIEER ]
5 4 1 1.0 —543 = (LT = CH k07
Total T° 0.00519

ALS FIRE PROTECTION ANALYSIS OF LONGITUDINAL STRINGERS BASED
O EUROCODE 3

AL ST A rypical exangple of steel sections in the stairs

Determine the thickness of the sprayed plaster profection required 1o give %) min fre resis-
tance for @ 406 « 178 = T UB, Grade S358IR. Use the following data:

Based on EMY 1993.1.2, Clause 4.2.2.2
A
S = 140/m

Mp =531kNm
My =380 kN m
Mpg=237TENm
m = 0.8y
p=2
hop = 0.20
P = TRS0 kp/m?
pp = 800 kg/m?

HJ‘I
M:

M1
I

Load ratics B =

My 137 L kSy y
— = — = 45 al = = =070
Mo | 532 W= Ry Rag

mMy 089 x 237
[ 7 T

= .355




A typical example of a wooden staircase siringer design based on Eurocode 5
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Figure Al6.1. A wooden
SCFngEr.

R =10,555
1 [T
'Hu.:r = T&.381 =] 48D = 634
n[(ﬂﬂ'ﬁﬂ[uu?im ) ]*
Effective density o, = p, (1 + (L03p) = 8001 + 0.03 » 20) = 1280 kg/m*
' ” 1.3
= A o — 1300
[V I3
== =%2xw
[40:524- Hﬂ:] .
Py Aptt 12804 210 .
=hpl = il =] =02 = 1 = L5
. ’(ﬂ.j‘r('ﬂ.) (:raju) x (140) B
Ao (44 x O5RRYE <
fu= - = 0.7065
u 2 « 0.588

dy = thickness ol the spray material for the siringers in the staitcase
A
=1prF..{T"_.) =02 % 9.2 107 x L7065 = 140 = 0.0182 m

ar 1B mm spray plasier

AlG A TYPICAL EXAMPLE OF A WOODDEN STAIRCASE STRINGER DESIGN

BASED ON EURCCODE 5

Figure Al.6.0 shows the stringer of a8 wooden staircase. Doe to landings at A and 8 and
horizonal cross-members for tee stalrease the reactions al restradpis A, B and C ane aboon,
There are axial vertical and horizontal thrusts at these restraints. The stringers are placed
parallel o one and other ar 0,60 m spacings, The stringers &re 38 » 125 sawn limber strength
clagse Cl6. They are inclired af 35" which forms the slope of the smircase. Using the data
gven and somé 1o ke lakes from the code, check (he :lrirla;:r for beth ulbinme -1 amd

serviceability lmit states. Asaume mavimem bending oceurs in AC.
{Xara

Gig o 0425 KNSm on slope

Cipean = B0 kM

[ = (.48 kM/m on plan

A -argi w 4750 e
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W, = section modulus = 58960 mm®
Iy second moment of &rea = 6 185 000 mm®
feok = compressive stress = 17 M/mm?
Eqps = Young's modulus = S400 &M/ mm?
kyey = 1.8 permaneni load deflection
ew 10 showt term load defection
B, = decor =02

vg =150

Yo =135

i = form factor = 1.2 {rectangular sechion)
Permanens foad

Meormmal o sfnimger = Qg 008 357 = 0348 kNm
Parrallel to stringer = Gy 5in 35" = 00244 kN/m

St term lood .

Moormal o siringer = (g cos” 157 = 00322 KNfm
Parallel to stringer = (0 cos 35° sin 30° = 0.226 kN/m
Permusnens (osds from building (p) siricheres

Nip = Ngp = 0425 kN e éﬂ.d—il w 0.348)

Nep = INap = OBSORN

Fap = 1425 cot 357 = (LG07 kN

Pop o= 2w 2447 w 00244 + D425 ol 357 = 1.799 kN

~0.425 )
peETT) = =0, 74] kN
Hep = =1 % (425500 35° = —(.485 kN

Hap = 1.799 cos 35° — 0,425 5in 35° = 1.230 kN
Y H=0 OK

Vop = 2 = 0425 cos 35" = 0,606 kKN

Vap = 1.79%%sin 3% + 0425005 35° = 1.38 kN
E ¥ e 2076 kN

3V = 1w a4l % 0428 = 2076 KN OK.

Hpp =

Short ferm loadr (q)

Nyg = Npg = %12-“131'& 323y = 0393 kN
Neg = 2Nag = 0786 kN

Py = 0393 cot 357 = 0.561 kM

Pug =2 = 2442 w 0.226 4+ 0393 cot 35° = 1.665 kN

0.393
Mg = ———— w = 685 kN
M ™ G 3se

Heq = 2% 0393 5in35° = —0.451 kN

Hag = 1,665 cos 35° — 0,393 5in 35° = 1.138 kN
Y H=0 0K

Vig = 2% 0,393 con 35° = 0.644 kN

Vg = 1665 5im 35° + 0,393 0o 357 = 1,277 kN
Y}V =1920kN

3V =2%2x040=1920kN OK
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Ultmnare it sfafe
Design load normal to stringer = yg@g + vpQx
= 13500348 4 1500322 m 0.953 kN/m
Diesign load parallel 1o siringer = 1.35(0.2448) + 1.5(0.226)
= 668 kN
An B (neas wop landing) Pa = 1.35(0.607) + 1.500.561) = 1.661 kN

|
Shear force Vy = [ﬂ-'?ﬂ](i * E-MI} = 1.164 kM

0.953(2.442)°
Mg (baming moment) = + w .71 kN m
Axial load ai mid point of the bottem pan of the gringer

= L2 (0668) + 1661 =4.108 kN

1
t;:sb:arsm:s.s:ﬁ=ﬂ.3? Him?
K sKpaF 1.l =09 % |.E
v = shear strength = 1 vE R E
¥ 13
= 1.37 Nimm?
My

T y.4 = bending siress = == = T.18 M mam®
»
Eik ) xkimad Fre i

Sy = bening sirength e

IEI'}TTIHLI 0.9 = 16
- '1 ; e = 1264 M/imm®

1,
i,:mﬁun[g)ﬂﬁm:{f:kﬂﬂm

2442
hy = slendemess alio = —— = §7.7

3608
4
O o 4 = dnial dress = % = 087 N/ mm?
2
0 crit,y = Duckling stiess = = fj‘“ = 11.63 N/mm?
¥
Fe
:"ir:I.p = II o = |.209
Ty, orit, ¥
ky m 05{1 4+ B Ohgey = 0.5) + 0l ) = 132
i
kpp = —————— = (.56
o 1
Ky 4+ 'l,llks = h;ll.r
Combined bending and axial streis
T o d D-,:p,d'
—_— % 1.0
lr.:r"-.'.n.n' .r-.:!.u'
. 7
femd = w = 12.95 kN/mm?
87 T,
0% + 18 =069 < 1.0 OK.

056« 1295 1164

Serviceabiliry Hmited siate-defleciion
Permanent service load normal 1o sringer = .48 kKN/m
Shon term service load normal o stringer = 00323 kN/m

Flesural deflection dos to uniform boad
SF.ar !

- m :nmh‘inpd ED'I' Iy Or &3
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Shear deflection dise to aniform load
_ b Fuar L2
T -
Fugi for sy =0 348
Fugr for wy =0.322
W) = instantaneoes permanent defliection = 3,40 mm
w3 = instantangous shorl term load deflection = 3,13 mm
ujan = final permanent load deflectlon = (1 + kyp)d
= 6,12 mm
unig = final short term load deflection = i3l + kgep)
= 313 mm

Total deflection = 9,25 mm
Recommended deflections

C_spam 442 )
Haina = Soe = =m0 = E.14 mm agzinst 5.13 mm
2442
b = % = S = 12.21 mm against 925 mm 0K

ALT COMPUTER PROGRAM S5TRING FOR BM QRDINATES

HMLSTER SSTRING
C THIS PROGRAM COMPUTES THE REACTIONS: BENDING MOMENT (EDINATES AT
¢ INTERVALS OF OBE-TENTH OF THE SPAN AND DEFLECTION AT THE CENTRE
¢ OF SIMPLY SUPPORETED BELMS WITH TRIANGULAR LOADING
WRITE(2,1)
1 FORMAT (LELS /// F1EX QOHEEACTIONE, BENDIKG MOMENT DRDINATES AND |
1EOHDEFLECTION AT THE CENTRE OF SIMPLY SUPPORTED BEANSSS
48X, JIHWITH TRIANGULAR LOADTISG//f/F40
9 READ{1 20 N
3 FORMAT (13}
IF(N.EQ.0)G0 TO 10
BEAD(Y, 306,44
3 FOBMAT{3FD.0)
C CALCULATE REACTIONS, RA AND RE
FE=We (G4} 6
Ri=Wsd/3-RE
WRITE(Z 40N, &, W, A LA BB
4 FORMATCEX, IZHIEPUT DATA o/ 4201, {THEEAM REFERENCE WO, Z2%1.3H =
118/ 20K ASSPAN 36X 30 = F6,.3,20 W/ /20X, Z1ANARTFUN LOAD ORDIRATE,
TIEE,IH = ,F6.3,5H EN/M/ 20T, IZUDISTANCE DF APET FEOM LEFT HAKD
33HEXD, 4%,30 = ,F6.3,30 W/////5K, SHRESULTE -///20,
A20IBEALCTION AT LEFT HAND END, RA, 20T 3H - F7.5 .38 KR/S/20X,
E3ORREACTION AT RIGHT HAMD END, BB, 9X.3H = FT.3.3H EN/#/
8101, 1GHDIST FROM L.H. END 10K, 23HEENDINC MIMENT ORDINATES
T1GL , BH{FETRES) , 24X  4HKN . M/ D
£ CALCIFLATE BENDING MDMENT ORDINATES
[0 5 I=0,10
o T
IFCA-0.005,12.13
12 BMEI=REs (5-X) =W (S-Xiss3/ (8+3)
Gl TD &
13 IF(E-A}E, B, T
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G EMI=Xe{Rl-SeIsL/{Ewl))
G o B
T EHE=(E-X) s (RB-W=(B-K)ee2/ (G (6-A)] )
& WRITE(Z. 80X, BN
B FORMAT(F22.3,F30. 3)
C CALOULATE DEFLECTION AT THE CENTEE
el T0D &
L0 WRTTE(Z,11)
L1 FORMAT{S/f/ /51X, 20=+ END OF R =)
STOP
END

ENl OF BEOMENT, LENGTH 186, EAFE ESTHING

FINIZH
END OF COMFILATION - KO ERRORS

30 SUHFTLE: 10 BUCKETS USED

CONZOLIDATED BY IPCE 128 DATE 18/08/T3 TIME 10/E8/18

FROGRAM HDPE

EXTENDED DATL {I2AM)
COMPACT PROGRAM (DHM)
CORE 4736

SEG ESTRING
ENT FIRAP
ENT FRESET

REACTIONS, BENDING MOMENT ORDIMATES AND DEFLECTION AT THE CENTRE OF EIMFLY
SUPPORTED HELNS WITH TRIANGULAR LOADING

INPOT DATA
EEAM REFERERCE ND L] i
SPAN = 3000 M
HAXTHMIM LDAT DEDTNATE = 1.000 KE/H
DISTARCE OF APEX FROM LEFT HANTY END = t.500 H
HEBULTSE :
BEACTIOR AT LEFT HAND ¥ND, RA = 1500 KN
EEACTTION AT RIGHT HAND ENDr. RE = 1.500 KN
DIST FROM L.H. END BENDI®G MOMENT ORDIBATE

[(HETRES) HE.M

. 000 G.g0d

Q. 300 444

0,500 G852

Q. 500 1.1E8

1.200 1.438

1. 500 1,600

1.800 1418

2,100 1.168

2,400 0. 62

2. 700 0. 445

3,000 . ea
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IHFUT DATA =
HERM REFERENCE MO - 2
BPAN = 300,000 M
MALIFUM LOAD OBDIKATE = 20000 EN/H
DISTANCE OF APEX FROW LEFT HAND END = 0,000 M
BESTLTS -
REACTION AT LEFT HAND END, Ri = 000, 000 BN
AEACTIODN AT RIGHT HAND END, RE = #L000.000 KN
CEST FROM L.H. END BENDING MIMENT CRDINATE

{METRES) KH_M

0. 000 0000

30,000 E1300, B0

60, (00 BE400, LD

B0 00l 107103, OO0

120,000 L1500, 03

150, 000 113500, 000

180, 00D LOQB0D ., 03D

L0, DOn B1900, 000

240, 00D Y600, 000

AT DO FTON, D0

300, 000 . 000
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APPENDIX 2

Structural details for practising
engineers

Al DEAWINGS AND STRUCTURAL DETAILS POR CONCRETE 5TAIRS

2.1.1 Sialrcase: Free-standing — Reinforcement details (British practice)

2.1.2 Seaircase; Free-slanding supporied by brickowork or on beams - Reinforcement details
{British practice)

2.1.3 Pre cast concrefe stairease {Birchwood Prodwets) (British practios)

2.1.4 Pre cast concrede stairs (British practice)

2.1.5 Plans and elevations of B.C. siairs: STEPS {Torkish/European practsce)

2.1.6 Typical reinforcement details of stairs and landings in a building: STEPS

{Turkish/ Evropean practice)

2 1.7 Typical reinforcement detals of stairs and landings in & bailding: WAIST

{Tarkish! European prachice)

118 Eltipio-helical staircase {Hyder Group UK) (British practice)

119 Svructural details of ellipto-helical siaircase (Hyder Group UK) (British practice)
1.1.10 Hedical staircase — Elevation and plans {Turkizh/European proctice)

21,11 Helical staircase — Struciural details (Torkish/ Buropean practice)

2.1.12 Helical stadrcase — Circular in plan — Reinforcement details (Ewropean practice) {Von
K. Winver 1977) (Ermst & Sohn)

2.1. 13 Helical-cum horseshoe siaircase — Reinforcement details (see example) (German prac-
tice) Erbauterungen zu DIN 1080, Voo K. Winler 1977, Emst & Sohn (Compliments from
Von K. Winter)

L1 04=21.06 Mixed staircase = Strasght-cum cireular S helical (Ward & Cole, London) (British
prachice)

AT DEAWINGS AND STRUCTURAL DETAILS POR STEEL STAIRCASES

2.2.1 Sectional elevation of o sieel stairs (Gibbs & Hill, New York) {Amenican practice)

2.2.2 Seructural details of stair (Gibbs & Hill, New York) (American practice)

2,2.3 Arch details of stair (Cibbs & Hill, New York)y (Amencan praclics)

2.2.4 Sweel helical siatrease — Elevations, plans and smoctural detsils {Torkish!Buropean
ractice)

E.E.S Sectional elevaiion. plan and details for free-siznding steel stalrs (Turkdsh) European

practice]

226 Typical stringer, step and connection detsils for steel staircases

227 Connection detadls for steel stringers to concrete landings and handrails for steel
slaircases

A23 STRUCTURAL DETAILS IN TIMBER

| Typical wonden staircases and their details

13
133 Handratls and posis
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STAIRCASE ELEVATION

A

| smi0-n-300

'| §T10-26-300

&T 20 -19 -300

243TI0-18 |

AT -17-5

IT10-19-380

10T 4246 150 |

9T12-25-150

\ §T12-13 * 571224 -125

1012 -2 2150

10T12-23-150

9T12-25 =150

i}

SCALE 150

eTW-n-250

st

tﬂ_ L & HOIMG

! [ - i)

| &

STAIRCASE ELE VATION

SCALE 1:50

Figure A21.1. Staircase: Free-standing - Reinforcement details (British practice).
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Figure A2 1.2 Staircase: Free-standing supported by brickwork or on beams — Reinforcement details (British practice),
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@

s

i

KABLO ve EM&YE BOBIN TELI
SANAYI AS. KARTAL TESISLERI

TASARIM VE WAPM GEREWLER] l
BETOM (Tebnik gartrarre . Bbldm E.2.1)
KUF RJHUREHIN BN AT

BETON EN Al AL MUKEVE METI
SIMIF] BT Al — ——
7 oiwLle | odkul
Ba 58 bgim® | Gorvkmar | %ohglee’
LTF] W M LT
s we MO iglemt | 200 4
B " ] - LI 15 »
L] Wi ML g s

Kuliamiscak Beten Siufr: B 300
BE TOMARME CELIG Tk sartrarme beélim E 2, 1)

' W AT CExHE EH AT
GeL ar MU MET] B
waiitesl | tmml KOPMA
s ) AWM | UTAHAT
{2 Erais | s kndar | aasongiend | s200 T
'] I denmorrn GBO0 (8GO0 4 r

En ke bindime Bogps | S0d [dls pulumisr gl

C il | Ekhokl cubuklar i)
En kE pad payi RS em,

Faynakls we poangonbs bondv e yapomal ypsidn

Mode: GOMLOK in Tarkish lanpuage is “day sirength’

e

3

REFERANS PAF TALARI 1 REFERENCE DRAWINGS

PAFTA N [1D OF OFWG. | FAF TANIN A0I 7 DESCRIFTIOR
ll'."q-ig.lﬂl KORHULLK DE T - HANORAL DETAILSE
. i MERDIVEN oy

Figure A21.5. Plans and elevations of R.C. stairs: STEPS (Turkish/Evropean pracuice).
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Figure A2 1.6 (coaL.).
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Figure ALL3. Arch details of stair (Gibbs & Hill, New York) (American practice).
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Figure AZ.2.4. Sueel helical stairease — Elevations, plans and structural detsils (Turkish/ European practice).
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In recent years both free-standing and geometnc staircases have become
quite popular. Many varfations exist, such as spiral, helical, and elliptical
staircases, and combinations of these. A number of reszarchers have come
forward with diftferent concepts in the fields af analytical and numerical
design and of experimental methods and assessments. The aim of this
book iIs to cover all these methods and to present them with greater
simplicity (0 practising engineers.

Starrcases is divided into five chapters: Specifications and basic data on
staircases; Structural analysis of slaircases - Classical methods; Structural
analysis of staircases - Modern methods, Staircases and their analyses
- A comparative study; Design analysis and structural detailing. Charts
and graphs are included and numerous desizgn examples are given of free-
clanding and other geometric staircases and of their 2lements and
components, These examples are related to the case studies which were
based on staircases that have already been constructed. All examples are
checked using various Eurocodes,

The book includes bibliographical references and is supparted by two
appendices, which will be of particular interest to those practising engineers
who wish to make a comparative study of the different practices and code
requirements used by various countries; detailed drawings are included
from the USA, Britain, Europe and Asia. Stafrcases will serve as a useful
text for teachers prepanng design syllabi for undergraduate and post
graduate courses. Each major section contains a full explanation which
alloves the book 1o be used by students and practising engineers, particularly
those facing the formidable task of having to design/detail complicated
ciaircases with unusual boundary conditions. Contractors will also fnd
this book useful in the preparation of construction drawings and
manufacturers will be interested in the guidance given in the text.
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